RT Components for using MORSE Realistic Simulator
for Robotics

O Igi ARDIYANTO, Yuki OKADA, Jun MIURA (Toyohashi University of Technology)

Abstract: Simulators are useful for developing robotic software modules. We have developed RT components for
using a realistic simulator for robotics, MORSE. Adopting the interface defined by the mobile robot Sub-WG of
NEDO Intelligent RT Software Project makes it easier to test existing components in this realistic simulation.

1. Introduction

Simulators have several advantages to be used as tools in
the robot development phases. Using simulators is a good
way to test a new algorithm for robotics which may harm
the real robot, for example, when it is still incomplete
or may have some bugs. Simulators can also be used for
users who can not afford to buy the expensive robot, to
test their algorithms in a cheap way.

There are several simulators for robotic, from open
sources to commercials one. Player/Stage, Gazebo, Sim-
bad3D, OpenHRP, MORSE, and ORCA are examples
of famous open source simulators, while WEBOT is one
of commercial simulators. Generally, an ideal simulator
should be able to imitate the real environments as realis-
tic as possible. The simulator is also expected to support
wide range of robots, sensors, and environments, and to
support a broad range communication with external pro-
grams. Simplicity of use also adds a good point to the
simulator to be chosen by users.

This paper describes the integration of a realistic sim-
ulator, MORSE, and a famous middleware OpenRTM [5]
which has a large number of modules for robotics. Firstly,
we explain the reason of choosing MORSE as the simu-
lator, then we describe the integration of both softwares.
We provide several implementations of the MORSE-RT-
Middleware integration. Lastly, we conclude our works
and offer possible developments in the future.

2. MORSE: Background and Motivation

This section describes the background of MORSE and our
motivation for choosing the MORSE as the robotic simu-
lator. We will also explain the architecture of the MORSE
to give the global idea how the MORSE works.

2.1. MORSE Simulator

MORSE (Modular Open Robot Simulation Engine) ([1],
[4]) is a realistic 3D simulator for robotics. It is a real time
simulator which runs on Blender, a popular open source
3D computer graphic software. Originated and developed
by LAAS-CNRS researchers, the MORSE is now used by
many robotic laboratories in the world.

13 (S12012)(2012 12 18

~20

MORSE has several benefits to be used as the robotics
simulator, i.e.:

e Realistic Simulator
MORSE uses OpenGL-based Blender Game Engine
that supports 3D rendering and Integrated Bullet Li-
brary for physics simulation.

e Fully Open-source
MORSE relies on Python and Blender dependencies,
which are open-source projects.

e Easy to Expand
It is easy to add new robot, sensor, and actuator mod-
els in the MORSE which is based on Blender 3D mod-
els and Python programming.

e Modular
Modularity of the MORSE gives opportunity for the
user to take a full control of each object in the simu-
lation.

Those benefits motivate us to use MORSE for testing
our robotics system.

2.2. MORSE Supports

In the current version (0.5.2 Stable), MORSE supports
many popular robot bases such as PR2, Pioneer, ATRV,
and Segway. The MORSE also has helicopter and sub-
marine robot for doing aerial and marine robot simulation.
Several common sensors like SICK laser, pose sensor, IMU,
and camera, as well as actuators such as speed controller,
pan tilt, gripper, and much more, can also be simulated by
the MORSE. The MORSE simulator supports indoor and
outdoor environments for simulation, as well as marine
and aerial one. Human model is also provided to perform
HRI simulation. To see the list of sensors and actuators
supported by the MORSE, please refer to [4].

For communication with other programs, the MORSE
supports four middlewares (YARP, ROS, PocoLibs, and
MOOS), and generic socket-based and text-based commu-
nication.

2.3. MORSE Architecture

To use the MORSE simulator, users need to know the ar-
chitecture of the MORSE (see Fig. 1), and follow certain
steps according to the MORSE workflow. The MORSE

) SY0012/12/0000 - 0535 © 2012 SICE

- 0535 -

MORSE SIMULATOR

T TR T

To other programs

Figure 1: MORSE Architecture

runs based on the specification script in Python written
by the user. The user needs to specify robots in the script,
sensors and actuators attached to each robot, communi-
cation or middleware type for communicating with other
programs, and the environment to be used.

The MORSE calls the model of each object and appends
them to the Blender Game Engine, then reads or writes the
data of objects according to their behavior inside Blender.
Lastly, the MORSE will pass the data to middlewares or
communication section to be used by external programs.

3. Integrating RT-Middleware and

MORSE

RT-Middleware is a CORBA-based infrastructure software
implemented using a number of specifications at the dis-
tributed middleware interface level, authorized by Object
Management Group (OMG) [3]. The implementation of
this middleware we use is called OpenRTM-aist. This mid-
dleware aims to build a modular structure of robots and
their parts (such as sensors and actuators) at the soft-
ware level and to ease the process of building robots by
simply combining modules. It allows system designers to
effectively build customized robots for many applications.
The component modules used to construct robotic systems
are called RT-Components.

3.1. RT-Middleware Support for MORSE

The reason of integrating RT-Middleware and MORSE is
to extend RT-Middleware support for many external li-
braries or applications. Another reason is that there are
many RT-Components (RTC) which perform various al-
gorithms for robotics, such as SLAM, motion planning,
mapping, people tracking, etc. It is a good idea to test
those algorithms in a simulator before applying them to
the real robot. A realistic simulator like MORSE can help
us to make a simulation as close as the real situation of the
robot. It encourages us to to make RT-Components that
will be the bridge of existing algorithms which have been
applied as RTCs, and the MORSE Simulator (see Fig. 2).

MORSE SIMULATOR

RT-MIDDLEWARE

Figure 2: Integration of MORSE Simulator and RT-Middleware

3.2. RT-Component for MORSE

Basically, we create RT-Components as bridges between
MORSE simulator and other RTCs in the RT-Middleware
environment. Our RTCs exploit the MORSE to realisti-
cally provide data of the robot and its sensors. Since RTCs
and MORSE have a great sense of modularity, we can eas-
ily exchange them with the real robot or sensors module
for the real experiments, without changing other compo-
nents. As the interface to the existing RTCs, we adopt
the one defined by the mobile robot Sub-WG of NEDO
Intelligent RT Software project. We implement RTCs for
MORSE simulator in two methods:

3.2.1. User-defined RTC

This method allows us to define components and its data
organization. For example, we can separate simulated
laser range finder as one module to imitate Top-URG mod-
ule (a component for retrieving Hokuyo laser data), while
we can merge simulated pose sensor, velocity sensor, and
motion controller as one component to imitate the real
robot controller component (see Fig. 3a).

This method utilizes socket for communication between
MORSE and RTCs. We have to retrieve port address of
each sensor and actuator assigned by the MORSE and
configure port address of RTCs manually. The workflow
is as follows:

1. Create MORSE script defining robots, sensors, actu-
ators, environment, and communication types;

2. Run the MORSE script;

3. Run RTCs in accordance with objects we use in
MORSE script;

4. Configure the port communication of each RTC;

5. Connect with external algorithms (e.g. SLAM, path
planner, etc.).

Currently, we have made several components for bridg-
ing robot controller, camera, stereo camera, laser range
finder, pan tilt unit, and artificial human component, us-
ing C++ version of OpenRTM (see Table 1). We also have
made 3D model for PeopleBot and human posture.

3.2.2. Automated RTC Generation

This method creates RTCs directly from the MORSE
Python script. We add OpenRTM definition inside

- 0536 -

Table 1: Development Environment for Integration of MORSE

and RT-Middleware

Software User-defined Automated
RTC RTC
(OF) Ubuntu 10.04 Ubuntu 10.04
MORSE 0.5.2 Stable 0.5.2 Stable
Blender 2.59 2.59
Python | 2.6 (OpenRTM) | 2.6 (OpenRTM)
3.2.2 (MORSE) | 3.2.2 (MORSE)
RTM OpenRTM-aist OpenRTM-aist
(C++) 1.0.0 (Python) 1.0.0
Additional - PyRTSeam

MORSE core (we call it OpenRTM extension script), and
modify the middleware part of MORSE to allow us gen-
erate the RTC for each sensor and actuator defined in
the MORSE script (i.e., one RTC for one sensor). All of
component’s naming and connection are taken care auto-
matically through Python script (see Fig. 3b).

We create RTC templates for each sensor and actuator
using PyRTSeam [6]. When we define the robot and sen-
sors we use in the MORSE Python script, the OpenRTM
extension will read the name and connection of each robot
and sensor directly inside the MORSE environment, then
passes it as arguments to RTC templates. As we run the
MORSE script, RTCs are automatically created.

We have made RTC templates for pose sensor, velocity
sensor, laser range finder, motion controller, and pan tilt
unit, for using this method.

4. Implementation

We have implemented integration of RT-Middleware and
MORSE for several applications:

e Path Planning Test

We use MORSE simulator and RT-Components for
testing our path planning algorithm [2]. This simula-
tion utilizes Local Map RTC, Waypoint Sender RTC,
Image Viewer RT'C, and Path Planner RTC (see Fig.
4b for path planner usage in a complex system). The
simulated robot follows waypoints given by Waypoint
Sender RTC, while avoiding obstacles.

e Indoor Exploration

We demonstrate the exploration algorithm using
MORSE and RT-Middleware integration. This simu-
lation gives an example how the MORSE-RTM inte-
gration works on a complex system, involving SLAM,
localization, path planner, and exploration compo-
nents. The simulated robot explores the simulated
environment representing our ICT building of Toy-
ohashi University of Technology (Fig. 5). The envi-
ronment is made for imitating the real building, as
well as its furnitures (see Fig. 4a).

MORSE Python Script RT-Middleware
Robot wﬁ
5
2
Sensors §' " "abutPasum&g T
z Controller R‘)bms‘”“d-; 2 3
5 | RTC [wteiconnd |3 B
hy ™
Actuators 5| o -
=z
Camera g_

i Camera Da
Environments |5 i3,

RTC

()

MORSE Python Script \ /" RT-Middleware
."

URG sensor RTC | EEEY Dat%

Robot >

Position Data
=y

Sensors > Pose sensor RTC

21eM3IPPIN

Actuators |>

Speed DaES

Speed Control

J1Y |eusaix3

Speed Control
RTC

(dewy |edo7 “1auueld yied ‘WVTS)

Environments |5,

Figure 3: RTC implementation methods for MORSE:
(a)User-defined RTC method, (b) Automated RTC generation
method.

e Viewpoint Planning for Attendant Robot

It is another complex system example for using
MORSE-RTM integration. This system is our current
research, where the robot always watches a specific
person from selected viewpoints. This system involves
simulated camera performing object tracking task in-
side the MORSE simulator (see Fig. 4c). It also uses
several RTCs such as viewpoint planner, path plan-
ner, localization, and local map components.

¢ Remote Control for Real and Simulated Robot
We show how an external controller for the real robot
can also be used for simulation in this MORSE-RTM
integration (see Fig. 4d). We have already used key-
board controller RTC and Wii remote controller RT'C
for controlling both real and simulated robot. The
user can directly use the controller RTC to both real
and simulated robot RTC by simply exchanging the
connection. Controller RTC will send the velocity
data to the MORSE simulator based on the user’s
command.

5. Conclusion

We have presented integration of RT-Middleware and
MORSE Simulator using our RT-Components. Realistic
simulation can be done in MORSE simulator using the
robotic algorithm from RT-Components. Several imple-

- 0537 -

K

LocalMapn

Urgsim3po ‘

‘i

RabotCantrollerSim300

-

Poselnterpolaterd
Imfageshowd

PathPlaninerd

HumanSmE00 - orneramanGiobalPlannerd

(b)

(d)

(c)

Figure 4: Implementation of RT-Middleware and MORSE integration: (a) Simulated environment screenshot created by MORSE, (b)
An example of combination of RTC bridge for the MORSE and other RTCs in a complex system, (c) Person tracking task in MORSE
simulator, (d) Robot control example using Wii remote controller.

Figure 5: Exploration algorithm using RT-Middleware and

MORSE integration: (a) Simulated Map of ICT building (see the

text), (b) Exploration map result.

References

[1] G. Echeverria, N. Lassabe, A. Degroote, S. Lemaig-

nan. "Modular Open Robots Simulation Engine:
MORSE”. In Proc. of IEEE Int. Conf. of Robotics
and Automation (ICRA), pp. 46-51, 2011.

I. Ardiyanto, J. Miura. ”"Heuristically arrival time
field-biased (HeAT) random tree: An online path
planning algorithm for mobile robot considering kin-
odynamic constraints”. In Proc. of IEEE Int. Conf.
on Robotics and Biomimetics (ROBIO), pp.360-365,
2011.

N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, W.K.
Yoon. "RT-middleware: Distributed component mid-
dleware for RT (robot technology)”. In Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS), pp. 3555-3560, 2005.

[4] http://www.openrobots.org/wiki/morse/

[5] http://www.openrtm.org/

mentations have been provided to proof the benefit of RT-
Middleware support for MORSE simulator.

In the future, we plan to add list of RT-Components for
supporting sensors and actuators in the MORSE. We also
want to implement other scenarios for different robots and
environments.

[6] http://www.sec.co.jp/robot/pyrtseam/index.html

- 0538 -

