
Visibility-based Viewpoint Planning for Guard Robot using
Skeletonization and Geodesic Motion Model

Igi Ardiyanto and Jun Miura

Abstract— This paper describes a viewpoint planning al-
gorithm for a guard robot in an indoor environment. The
viewpoint planner is used for the guard robot to watch a certain
object such as human continuously. Rather than continuously
follows the object, moving the guard robot using the viewpoint
planner has many benefits such as reducing the movement and
the energy used by the robot. Our viewpoint planner exploits
the topology feature of the environment, which is extracted
using a skeletonization technique to get a set of viewpoints.
We search for escaping gaps from which the target may go
out of the robot’s sight, and make the movement model of
the target and the robot to determine the predicted time of
the worst case escape of the target. We then plan the action
for the robot based on the geodesic model and escaping gaps.
Simulation results using 3D simulator are provided to show the
effectiveness and feasibility of our algorithm.

I. INTRODUCTION

For supporting human life, the robot need to be close
and interact with human. Generally, those closeness and
interactions force the robot to have the ability for recognizing
human and having the space awareness. For a specific need,
the robot also has to be equipped with a specific ability,
too. This ability is often taken or imitated from the human
behavior when he faces the same task or situation. Let us
take an example from a guardian who always watches a
VIP officer in a gallery, or a cameraman who takes a film
or documentation about a visiting official in a museum or
offices. The guardian has to keep the VIP officer within his
field of view without disturbing that person. Similar with the
cameraman, he should always recognize the person without
failing to keep that person within camera frames.

Our goal is to make a guard robot which imitates such
jobs of the guardian or the cameraman. The robot is given a
task to watch and capture the video of a person inside indoor
environments like the museum, gallery, office, or exhibition
room. Besides the main task of the robot which is to keep the
person inside the video, the robot also should be aware of the
space in the environment in order to take its advantages. For
example, the robot can increase the efficiency of the batteries
by taking the video while stopping at the point which has
a large coverage. Another benefit is that the stopping robot
can reduce noises and blur in the image frames due to the
robot’s instability when the robot moves.

We propose a viewpoint planning for a guard robot system
in an indoor environments. Viewpoint is a point where the
robot can safely watch the target by taking the video for a

I. Ardiyanto and J. Miura are with Department of Computer
Science and Engineering, Toyohashi University of Technology,
Hibarigaoka 1-1, Tenpaku-cho, Toyohashi, Aichi, 441-8580, Japan
{iardiyanto,jun}@aisl.cs.tut.ac.jp

long time. The viewpoint planning gives a global plan for
the robot to move while capturing the video of the target.
The usage of viewpoints is to increase the possibility of the
robot reducing its movement.

II. RELATED WORKS

A. Art Gallery Problem

The art gallery problem is a problem of finding a minimal
number of guards in a gallery with a complex polygonal
shape so that every point inside the gallery can be seen
continuously. This problem has been studied by many re-
searchers, such as [13], [14], [15], and [16].

The art gallery problem is closely related to our problem,
in terms of the ability of guarding an indoor environment.
The main difference is that the art gallery problem uses
several static guards to cover the whole area, while our guard
robot problem has only one dynamic guard. We formulate our
guard robot problem as the dynamic version of the art gallery
problem, where the guard (i.e. the robot) will dynamically
visit the possible static guards to maintain the coverage.

B. Pursuit-Evasion

Another problem that is close to our problem is the
pursuit-evasion problem. In this problem, pursuer(s) and
evader(s) move within the environment until the pursuer(s)
locate(s) and catch all of evaders. There are also huge number
of researches addressed to the pursuit-evasion problem, such
as [8], [9], [10], [11], and [12]. In the classical pursuit-
evasion problem, the target or the evader always tries to
escape from the robot or the pursuer. Our approach assumes
that the target moves independently while the robot always
tries to locate the target. The uniqueness of our approach is
that we use precomputed locations from which the robot can
locate the target, and how the robot moves from one location
to another using the smallest effort.

C. Object Following using Mobile Robot

Basically, the object following algorithm can also be used
by a guard robot for tracking the target. The object following
algorithm also has a long time history, such as the work by
[17] and [18]. This technique will force the robot to always
follow the target no matter the shape of the environment.
Contrary, our approach tries to ”understand” the shape of
the environment and uses that information to track the target
effectively. The viewpoint planner is also different from our
previous work on people following robot [7], where the robot
tries to be within some distances from the target, while the
viewpoint planner tries to keep the target in the FOV.

Fig. 1: Overview of viewpoint planning algorithm: action for extracting
viewpoints in the offline stage (top), viewpoint planner execution in the
online stage (bottom).

D. Our Contribution

We aim to minimize the movement of the robot while
always keeping the target within the camera frame (i.e. the
robot field of view). Our contribution lies in the usage of
viewpoints as the place for the robot for taking the video
effectively and its movement planning. The viewpoint plan-
ner, which resembles the dynamic version of the art gallery
problem, utilizes a new approaches using the skeletonization
and geodesic motion model.

III. SKELETON-BASED VIEWPOINTS

We divide the viewpoint planning algorithm into two
stages: offline and online stages (see Fig. 1). In the offline
stage, we examine the environment to get viewpoints. We
then use those viewpoints to make action plans for the robot
real-time, according to the current condition of the robot and
the target.

To get viewpoints from the environment, we basically
exploit the topology of the environment. We use the rea-
soning from human intuitions, for example in an indoor
environment, the topology feature like the intersection is
a place where we can stay for a long time to take the
video because it covers a wide area (the intersection connects
several corridors or hall way). Contrary, the corner of a room
does not have such benefit like the intersection. We use the
skeletonization of the map to get such topology.

The skeletonization technique itself is widely used in
the image processing and pattern recognition applications
(e.g. [20] and [21]). We introduce a new application of the
skeletonization technique to get map topology and combine
it with the template matching for extracting viewpoints from
a map.

A. Environment Representation

Let us consider two dimensional grid map C which is
obtained by a mapping algorithm (i.e. SLAM). This grid
map consists of the passable area F and the non-passable
area N for the robot. The grid map C which is retrieved by
SLAM usually has a complicated shape (for example, see
Fig. 2a and 2c). We simplify the map using three steps:

(a) (b)

(c) (d)

Fig. 2: The environment maps: the raw map from SLAM (left) and its
simplified map (right).

1) Binarization. Let px,y be a point inside C, the binary
map B is simply obtained by using

B(px,y) =

{
1 for px,y ∈ F
0 otherwise

(1)

2) Contour extraction. We extract the contour from the
binary map using the method introduced by Suzuki,
et al. [5], producing an outer boundary Γ and hole
boundaries ΓHi with i ∈ {1, 2, . . . , n}, and both
are closed polygonal chain. The number of holes n
depends on the map (some maps may have no hole,
n = 0, please see Fig. 2a for example).

3) Polygon simplification. Γ and ΓHi
are then simpli-

fied by using Douglas-Peucker algorithm [6], to be a
polygon Φ and holes Hi. Let interior(Φ) denote a
set of px,y ∈ C which lie inside Φ, and exterior(Hi)
denote a set of px,y ∈ C which lie outside Hi. We then
redefine the passable area F ⊂ C in the environment
as

F = {∀px,y|px,y ∈ {interior(Φ) ∩ exterior(Hi)}}.
(2)

We also define the robot model as a differential-steering
robot given by R = {xr, yr, θr, vr, wr}, representing the
robot position (xr, yr), heading θr, translational veloc-
ity vr, and angular velocity wr. An auto focus pan-tilt-
zoom camera is attached on the robot, modeled by ϕ =
{ϕpan, ϕtilt, ϕzoom} representing pan, tilt, and zoom posi-
tion respectively. Lastly, the target to be tracked is modeled
by O = {xo, yo, vxo, vyo} where (xo, yo) and (vxo, vyo) are
representing the target position and velocity.

B. Skeletonization

In an indoor environment, a person can easily recognize
the environment’s topology such as corridors, rooms, in-
tersections, and corners. With such information, the person
can determine which part of the environment can be used
for fulfilling their needs; for example, the person will stay
at an intersection to see connected corridors wider than at
a corner. To imitate those human intuitions, we use map
skeletonization to get such topological properties.

(a) (b)

(c) (d)

Fig. 3: Map skeletonization: Distance Transform Map (left) and final
skeleton map result (right).

Fig. 4: Example of templates (5x5 cells).

Our skeleton map (see Fig. 3) is built using laplacian of
distance transform. We first build a distance transform map
D given by

D(px,y) =

{√
(x− x2)2 + (y − y2)2 for (x, y) ∈ F

0 otherwise
(3)

where (x2, y2) is the nearest non-passable point to (x, y).
We then apply a laplacian filter to D, to get the skeleton

map K, denoted by

K(px,y) =
∂2D
∂x2

+
∂2D
∂y2

. (4)

K is then binarized by a threshold (see Fig. 3b and 3d).

C. Retrieving Viewpoints

The skeleton map K gives us information about topology
of the environment. We can see in Fig. 3b and 3d that
K consists of endpoints, junctions, and connecting paths.
We consider junctions as interesting points based on an
assumption that we can gain wider field of view in such
positions to watch the target. Endpoints are also considered
as interesting points due to its ability to catch small details of
the map like corners and the end of a corridor. We call those
interesting points as viewpoints. We use template matching
method over K map to get a set of viewpoints P . We use 30
templates simultaneously (see Fig. 4) and take the one with
the smallest dissimilarity given by

d(x, y) =

√∑
m

∑
n

[W(m,n)−K(x+m, y + n)]
2 (5)

where d(x, y) is dissimilarity at point (x, y), W is the
template map, (m,n) is size of W , and K is the skeleton
map. A viewpoint is said to be detected at location (x, y)
(i.e. px,y ∈ P) when d(x, y) is smaller than a predetermined
threshold.

(a) (b)

Fig. 5: Maps with skeleton and viewpoints. Small circles denotes
viewpoints.

D. Visibility of Viewpoints and Its Optimization

Visibility polygon is a polygon which encloses the visible
area from a certain point. Let V (Pi) denotes the visibility
polygon of the point Pi ∈ P , i ∈ {1, 2, . . . , k} where
k is the number of viewpoints. Visibility polygon V (Pi)
encloses the set of points in F which are visible from Pi,
or we denote it as interior(V (Pi)). We use a similar idea
with the art gallery problem that we want to minimize the
number of viewpoints k such that the union of interior of
visibility polygons will cover all of the passable area F .
This minimization problem is denoted by

f(k) =

k⋃
i=0

interior(V (Pi)) (6)

arg min
k

f(k) ∼= F . (7)

To solve (7), we do iterative pruning of viewpoints using
two steps: (1) test each endpoint-type viewpoints (viewpoints
which lie at the end of segments in the skeleton map), and
prune it when f(k) ∼= F is still satisfied by excluding that
viewpoint, (2) do the same procedure for each junction-
type viewpoints (viewpoints which lie at the intersection
of segments). This order is based on an assumption that
junctions usually have more field of view than endpoints. At
the end of iterations, we redefine k as the optimized number
of viewpoints (see Fig. 5).

In the case where the robot’s visibility is limited (e.g.
ϕzoom of the camera is limited), it may happen that f(k) <
F . We solve this problem by repeating the skeletonization
and viewpoints retrieving on the area which is not covered
before. By using this approach, we can make sure that
f(k) ∼= F is always satisfied.

IV. VIEWPOINT PLANNING

This section describes the viewpoint planning algorithm.
The main goal of the viewpoint planning algorithm is to
minimize the movement of the robot without losing the
target. Here we assume that the camera tracking is done
separately by another system (e.g., pan-tilt-zoom camera
automatically adjusts the view toward the target), so that
we can focus to the planning algorithm for the robot. As
a consequence, we also assume that the robot has 360◦ field
of view (FOV).

The viewpoint planning works as follows; First we search
for escaping gaps from which the target may go out of the
robot’s sight. We then make the movement model of the

Fig. 6: Escaping Gaps. The small circle inside the green circle is the robot
position and other small circles are viewpoints. The bold white line in the
middle of free space (black area) is escaping gaps. Yellow lines denotes the
visibility polygon.

target and the robot to determine the the predicted time of
the worst. Lastly, we plan the action for the robot based on
the model and escaping gaps.

A. Escaping Gaps

Escaping gaps are a set of points from which the target
may go out of the robot’s sight. Escaping gaps have a similar
idea with the well-known term frontiers for exploration of
unknown space (e.g. [9]). With the same definition of V (Pi),
let V ((xr, yr)) denotes the visibility polygon created by the
current robot position (xr, yr). If b(V) denotes a set of points
which lie at the boundary of polygon V , then we define
escaping gaps Λ as a set of points px,y ∈ b(V ((xr, yr)))
which do not lie at the environment boundaries Φ nor Hi

(see subsection III-A for the definition), or we can write it
as

Λ = {px,y |px,y ∈ b(V ((xr, yr)) ∧ ¬(px,y ∈ b(Φ) ∨ px,y ∈ b(Hi))}
(8)

Equation (8) can easily be understood by seeing Fig. 6.
The bold white line in Fig. 6 represents escaping gaps which
lie on the visibility polygon but do not lie on the environment
boundaries.

B. Geodesic Motion Model for Target and Robot Movement

We use a worst-case assumption to ensure the target will
not escape from the robot’s view. The worst-case assumption
is formulated based on two propositions1: (1) from the target
point of view, the target is independent from the robot, i.e.
the target does not care about the robot action, (2) from the
robot point of view, the robot always thinks that the target
will try to escape from the robot view. In other word, the
robot thinks that the target tries to escape through the nearest
escaping gap.

Based on the worst-case assumption, we compute the
predicted time for both the robot and the target to reach
all of escaping gaps. Computing the travel time by using
Euclidean Distance (ED) is not a good option, because ED
does not consider the shape of the environment. We prefer
to use geodesic model by using the wave front approach of
[1].

Let a monotonic wave front originated from a determined
source point moves across a space, then the travel time T of

1Those propositions give us a slightly different definition of our algorithm
compared to the pursuit-evasion problems. In the pure pursuit-evasion
problem, the target or evader always tries to escape from the robot or pursuer
rather than make an independent action.

(a) (b)

Fig. 7: The travel time map of the robot (a) and the target (b). The black
circle represents the robot’s current position. The blue circle with line
denotes the target position and its predicted movement.

the wave front in every point px,y can be calculated using

|∇T (px,y)| = 1

J (px,y)
. (9)

The travel time of a point depends on the distance from
the source point and the velocity function J(px,y) used for
traveling the wave front toward that point. This problem is
known as Eikonal equation problem, and according to [1] eq.
9 can be approximated by first order finite difference scheme

max

(
T (px,y)− T1

∆x
, 0

)2

+ max

(
T (px,y)− T2

∆y
, 0

)2

=
1

J (px,y)2

(10)
where

T1 = min (T (px+1,y), T (px−1,y))

T2 = min (T (px,y+1), T (px,y−1))
(11)

The solution2 of (10) is given by

T (px,y) =


T1 +

1
J(px,y)

for T2 ≥ T ≥ T1

T2 +
1

J(px,y)
for T1 ≥ T ≥ T2

quadratic solution of (10) for T ≥ max (T1, T2)
(12)

The velocity model of both the robot and the target is
defined as follows:

1) For the robot, we want the robot to move safely in the
environment. We use the distance map D in (3), then
it is normalized to 0 and maximum speed of the robot
vrmax to give the velocity function

Jrobot(px,y) = ‖D(px,y)‖norm(0,vrmax)
. (13)

It means we give a higher velocity in the area which
is farther from obstacles (see Fig. 7a).

2) For the target, we take the current target velocity into
account by using velocity cone model combined by
distance map D. Let C be the cone area which consists
of points px,y satisfying

C =

{
∀px,y |px,y ∈ F ∧

(
∠px,y ≤ arctan

(
vxo

vyo

)
±
π

3

)}
,

(14)
then velocity function JC of the cone area is given by

JC(px,y) =


vtarget for px,y ∈ C
ε for px,y /∈ C ∧ px,y ∈ F
0 otherwise,

(15)

2The quadratic solution in this equation means a quadratic equation ax2+

bx+ c = 0 has the solution −b±
√

b2−4ac
2a

.

where vtarget = (v2xo + v2yo)
1
2 and ε is a small con-

stant. We then combine JC and D to get velocity model
for the target

Jtarget(px,y) = JC(px,y) ‖D(px,y)‖norm(0,1) . (16)

This combination is the key of our proposed geodesic
motion model for the viewpoint planner. Figure 7b
shows that by using velocity model, the travel time
of the target will follow the shape of environment.

Each (13) and (16) respectively substitutes J (px,y) in
(10), then we get geodesic model of the travel time for the
robot Trobot(px,y) and for the target Ttarget(px,y).

Back to the worst-case assumption, we try to find the most
critical escaping gap λcritical (i.e. the fastest one which can
be reached by the target) by examining

λcritical = arg min
i

Ttarget(λi) (17)

for i = (1, 2 . . . , n), n is the number of escaping gaps, and
λi ∈ Λ.

Basically, (17) also tells us that if the robot just stops
at its position, it will lose the target at the predicted time
Ttarget(λcritical). It gives us an important definition,

Definition 1: The stopping robot will lose the target at
Ttarget(λcritical), except at a condition Ttarget(λcritical)→
∞.

It is imaginable that if the target moves away from all of
escaping gaps (i.e. the target is always in the robot FOV),
then based on the velocity model of the target, escaping gaps
will have very small velocity which leads to a very large
Ttarget (see eq. (10) and (15)).

C. Planning using Cost Minimization

To get a minimum amount of the robot’s movement while
keeping the target inside the robot’s FOV, we use cost
minimization for the planning. We define several properties
for the planning algorithm:

• P as set of viewpoints,
• S as set of states,
• A as set of actions,
• R(S,A) as applied rules based on S and A,
• β(S,A,R) as the cost caused by action A, current state
S, and rules R.

We use two states, S = {s0, s1}, where s1 is the state
where the current position of the robot is at the one of
possible viewpoints P and s0 is the state where the robot
is not at the viewpoint (i.e., the robot is moving from one
viewpoint to another). We also define possible actions for
the robot as A = {a0, aP1 , . . . , aPk

}, where k is number
of viewpoints, a0 represents “do nothing” action for the
robot3 (i.e. the robot just stops at the current position), and

3The stopping action only describes that the robot stays at the same
position, but actually the robot can make rotation or controlling the pan-tilt-
zoom system to adjust its view toward the target, and it is also applicable
for other actions.

{aP1
, . . . , aPk

} are the action for the robot to go to one of
viewpoint Pi.

We introduce the following rules for R(S,A):
• Rule 1. The action a0 is only applicable to the state s1.

This rule arises due to the definition of the viewpoint
planning itself, where we want the robot to make a
transition between viewpoints (i.e. the robot should not
stop at non-viewpoint). It will cause a penalty cr1, given
by

cr1(s, a) =

{
∞ for s = s0 ∧ a = a0

0 otherwise.
(18)

• Rule 2. An action which leads to the viewpoint where
the robot cannot see the critical escaping gaps is not
applicable. It is understandable that such viewpoints
will make our robot lose the target. This rule causes
a penalty cr2, given by

cr2(a) =


0 for a ∈
{ai|λcritical ∈ interior(V (Pi))}

∞ otherwise.
(19)

Please see the definition of interior(V (Pk)) at subsec-
tion III-D.

• Rule 3. This rule is a consequence of “Definition 1”. Let
Pcritical be a viewpoint inside the visibility polygon of
the robot V ((xr, yr)) (see the definition in subsection
IV-A) which is the nearest to the critical escaping gap.
The rule is based on a simple intuition that if the time
for the robot to reach the viewpoint Pcritical is longer
than the time for the target to reach the critical escaping
gap λcritical, then the robot will lose the target, or we
can write it as

Trobot(Pcritical) ≤ Ttarget(λcritical) (20)

Equation (20) happens on the stopping action, but it
is also applicable for other actions. This rule causes a
penalty cr3, given by

cr3(a) =



0 for all a when
Trobot(Pcritical) ≤ 0.8T

0 for a = aPcritical
when

0.8T ≤ Trobot(Pcritical) ≤ T
∞ otherwise,

(21)

where T = Ttarget(λcritical). Basically, eq. (21) elabo-
rates eq. (20) to see if the robot is at the critical time
for losing the target. Before this critical time condition
is violated, the robot can choose any action including
the stopping action. When the critical time for losing
the target is near, the robot has to do an action for
preventing it (i.e., the robot should go to Pcritical),
because if the robot does not do anything then the
condition will be violated, and any action cannot help
the robot from losing the target (see the third row of eq.
(21)). A constant 0.8 (experimentally obtained) is given

to make sure the robot does not violate the critical time
(i.e. ensuring the robot to move before violating the
critical time).

Putting them together, we define the sum of the penalties
caused by the rules as

R(s, a) = cr1(s, a) + cr2(a) + cr3(a), for a ∈ A, s ∈ S
(22)

We then exclude all actions which give R(s, a) 6= 0 from A.
Finally, we select the action based on the minimization

problem of the cost β(S,A,R), given by

arg min
a

β(s, a,R), for a ∈ A, s ∈ S (23)

where
β(s, a,R) = Trobot(Pi), (24)

Pi is the viewpoint selected by action aPi
. To summarize,

the behavior of the guard robot will be as follows:
• When the robot is at a viewpoint, it will stay there

within the viewpoint until the condition in rule 3 is
violated.

• When the robot is not at a viewpoint (i.e. the robot is
moving from one viewpoint to another), the robot will
not stop until it reaches one viewpoint.

After an action was selected, the path which leads to the
goal of the action is extracted as the planning result. The
path is calculated by backtracking the geodesic motion model
of the travel time for the robot Trobot(px,y) from the goal
(chosen viewpoint Pi) to the robot position p(xr, yr). We
then send the planning result as a set of waypoints to a local
path planner to be executed. We use path planner algorithm
in [7] as the local path planner.

V. EXPERIMENTS AND DISCUSSIONS

We test the viewpoint planning algorithm in a 3D sim-
ulation representing the real robot and environment. We
implement our viewpoint planner as an RT-Component which
is software module running on RT-Middleware [19] environ-
ment. We use a 3D simulator ([3], [4]) to perform the guard
robot system consisting of the viewpoint planner and the
person tracking using a pan-tilt-zoom camera.

We use a color-based particle filter for tracking a person
in a red clothing. This tracking system uses a simulated pan-
tilt-zoom camera and runs independently from the viewpoint
planner; it behaves like the camera for cameraman or the eyes
of the guardian which continuously captures and keeps the
tracked person within the camera frame or the guardian FOV.
The viewpoint planner runs in two stages: offline and online
stages. In the offline stage, we get the map data from a SLAM
algorithm, then we retrieve viewpoints from the map using
the skeleton-based algorithm. We then use these viewpoints
to make a global plan for the robot in the online stage. The
action chosen from the global plan are then executed by a
local planner.

The 3D simulator represents the first floor of ICT building
of our university (see Fig. 8a). We use the simulated robot,
a laser range finder, a camera, and environments mimicking

(a)

(b)

Fig. 8: 3D simulator appearance: (a) top view of the environment, (b) robot
and target appearances.

(a) (b)

(c)

Fig. 9: Result of the guard robot simulations: (a) Tracked person, (b)
Time of losing the target, (c) Velocity profile of the robot, blue ellipses

indicate the state when the robot stops at a viewpoint.

the real condition (see Fig. 8b). To show the robustness of
the algorithm, we perform the guard robot simulation five
times, and capture the time of losing the target according to
the viewpoint planner and the camera frame. Better planner
will have less time for losing the target. We also record the
velocity of the robot during simulation.

Figure 9b explains the time of losing the target. As we can
see that according to the planner, our algorithm never loses
the target, but the camera sometimes loses the target. This
behavior happens because of a late response of the pan-tilt
system inside the 3D simulator. Figure 9c shows the velocity
profile of the robot. The zero velocity means the robot stays
in one place to track the person, while others mean the robot
moves from one viewpoint to another viewpoint. In this case,
the more the robot stays in one place, the less energy used
by the robot to move, which means we will get more energy
saving as the result.

We then test the viewpoint planning algorithm in a more
challenging environment which has many rooms (in the
geometrical terms, it is called polygon with holes, please
see Fig. 10). Our algorithm can produce feasible viewpoints

(a) (b)

(c)

Fig. 10: Simulation in more complex environment: (a) top view of the
environment, (b) Skeletonization and viewpoints of the map, (c) Velocity

profile of the robot, blue ellipses indicate the state when the robot stops at
a viewpoint.

for the robot (see Fig. 10b) for not losing the target. Figure
10c also tells us that the robot stays at the viewpoints which
leads to energy saving.

We compare the performance of our viewpoint planner
with the ordinary people tracking algorithm as described in
[7], to see the effectiveness of the robot’s movement. Table I
shows the energy used by the robot for each algorithm. Sim-
ulation 1 refers to the simulation in Fig. 8, while simulation
2 refers to the simulation in Fig. 10. The energy is calculated
by the integration of the translational and rotational energy,
given by

Energy =

T∑
k=0

1

2
mv2k +

T∑
k=0

1

2
Iω2

k (25)

where T is the total time, m is the robot mass, I is the
moment of inertia of the robot, v is the translational velocity,
and ω is the rotational velocity. We can see that our viewpoint
planner uses less energy, which means it can reduce the
movement of the robot, comparing to the ordinary people
tracking algorithm.

TABLE I: Energy Comparison (in Joule)

Viewpoint Planner People Tracking
Simulation 1 561.75 724.50
Simulation 2 882.50 1056.05

VI. CONCLUSION

We have presented a novel visibility-based viewpoint plan-
ning algorithm for the guard robot using a skeletonization
and a geodesic motion model. We utilize the topology of
the environment to make an effective movement of the
robot. Simulation results show that our algorithm can reduce
the movement of the robot, thereby saving the energy and
reducing the blur due to unstable attached camera.

Several improvements can be implemented; one of them
is to examine the environment in the 3D space to determine
viewpoints. It will give us a more robust planning for several

partial occlusion cases, for example, when the target is
partially occluded by a table in a dead-end corridor, the robot
does not need to move to other viewpoints.

REFERENCES

[1] M.S. Hassouna, A.E. Abdel-Hakim, and A.A. Farag. ”PDE-based
robust robotic navigation”. Image and Vision Computing, vol. 27, pp.
10-18, 2009.

[2] J. Sethian. ”A fast marching level set method for monotonically
advancing fronts”. In Natl. Academy of Sciences, vol. 93, pp. 1591-
1595, 1996.

[3] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan. ”Modular
Open Robots Simulation Engine: MORSE”. In Int. Conf. on Robotics
and Automation, pp. 46-51, 2011.

[4] I. Ardiyanto and J. Miura. ”RT Components for using MORSE
Realistic Simulator for Robotics”. The 13th SICE System Integration
Division Annual Conference, pp. 535-538, 2012.

[5] S.Suzuki and K.Abe. ”Topological structural analysis of digital binary
image by border following”. CVGIP, vol. 30, pp. 32-46, 1985.

[6] D.H. Douglas and T.K. Peucker. ”Algorithms for the reduction of the
number of points required to represent a line or its caricature”. The
Canadian Cartographer, vol. 10, pp.112-122, 1973.

[7] I. Ardiyanto and J. Miura. ”Real-time navigation using randomized
kinodynamic planning with arrival time field”. Robotics and Au-
tonomous Systems, vol. 60, no. 12, pp. 1579-1591, 2012.

[8] B.P. Gerkey, S. Thrun, and G.J. Gordon. ”Visibility-based Pursuit-
evasion with Limited Field of View”. Int. Journal of Robotic Research.
vol. 25, no. 4, pp. 299-315. 2006.

[9] J.W. Durham, A. Franchi, and F. Bullo. ”Distributed pursuit-evasion
with limited-visibility sensors via frontier-based exploration”. In Int.
Conf. on Robotics and Automation, pp. 3562-3568, 2010.

[10] L. Guilamo, B. Tovar, and S. LaValle. ”Pursuit-evasion in an unknown
environment using gap navigation trees”. In Int. Conf. on Intelligent
Robots and Systems, pp. 3456-3462, 2004.

[11] L. Guibas, D. Lin, J.C. Latombe, S. LaValle, and R. Motwani.
”Visibility-based pursuit evasion in a polygonal environment”. Int.
Journal of Computational Geometry Applications, vol. 9, no. 5, pp.
471-494, 1999.

[12] V. Isler, S. Kannan, and S. Khanna. ”Randomized pursuit-evasion in
a polygonal environment”. IEEE Trans. on Robotics, vol. 21, no. 5,
pp. 875-884. 2005.

[13] L.H. Erickson and S.M. LaValle. ”An Art Gallery Approach to
Ensuring that Landmarks are Distinguishable”. Robotics: Science and
Systems, 2011.

[14] D. Avis and G.T. Toussaint. ”An efficient algorithm for decomposing
a polygon into star-shaped polygons”. Pattern Recognition, vol. 13,
no. 6, pp. 395-398, 1981.

[15] J. O’Rourke. ”Art Gallery Theorems and Algorithms”. Oxford Uni-
versity Press, 1987.

[16] S.K. Ghosh. ”Approximation algorithms for art gallery problems”,
Proc. Canadian Information Processing Society Congress, pp. 429-
434, 1987.

[17] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. ”People tracking
with mobile robots using sample-based joint probabilistic data associ-
ation filters”. Int. J. Robot Research, vol. 22, no. 2, pp. 99-116, 2003.

[18] N. Bellotto and H. Hu. ”People Tracking with a Mobile Robot: a
Comparison of Kalman and Particle Filters”. 13th IASTED Int. Conf.
on Robotics and Applications, 2007.

[19] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.K. Yoon.
”RT-middleware: Distributed component middleware for RT (robot
technology)”. In Int. Conf. on Intelligent Robots and Systems, pp.
3555-3560, 2005.

[20] H. Fujiyoshi, A. J. Lipton, and T. Kanade. ”Real-time human motion
analysis by image skeletonization”. IEICE Trans. Information Systems,
vol E87-D, no. 1, pp. 113-120, 2004.

[21] J. Hsieh, Y. Hsu, H.M. Liao, and C. Chen. ”Video-Based Human
Movement Analysis and Its Application to Surveillance Systems”.
IEEE Trans. on Multimedia, vol. 10, no. 3, 2008.

