

Figure 9.22 Concept of current mirror.

The bandgap circuit by itself does not solve all of our problems! An integrated circuit may incorporate hundreds of current sources, e.g., as the load impedance of CE or CS stages to achieve a high gain. Unfortunately, the complexity of the bandgap prohibits its use for each current source in a large integrated circuit.

Let us summarize our thoughts thus far. In order to avoid supply and temperature dependence, a bandgap reference can provide a "golden current" while requiring a few tens of devices. We must therefore seek a method of "copying" the golden current without duplicating the entire bandgap circuitry. Current mirrors serve this purpose.

Figure 9.22 conceptually illustrates our goal here. The golden current generated by a bandgap reference is "read" by the current mirror and a copy having the same characteristics as those of  $I_{REF}$  is produced. For example,  $I_{copy} = I_{REF}$  or  $2I_{REF}$ .

## 9.2.2 Bipolar Current Mirror

Since the current source generating  $I_{copy}$  in Fig. 9.22 must be implemented as a bipolar or MOS transistor, we surmise that the current mirror resembles the topology shown in Fig. 9.23(a), where  $Q_1$  operates in the forward active region and the black box guarantees  $I_{copy} = I_{REF}$  regardless of temperature or transistor characteristics. (The MOS counterpart is similar.)

How should the black box of Fig. 9.23(a) be realized? The black box generates an output voltage,  $V_X(=V_{BE})$ , such that  $Q_1$  carries a current equal to  $I_{REF}$ :

$$I_{S1} \exp \frac{V_X}{V_T} = I_{REF},\tag{9.86}$$

where the Early effect is neglected. Thus, the black box satisfies the following relationship:

$$V_X = V_T \ln \frac{I_{REF}}{I_{S1}}. (9.87)$$

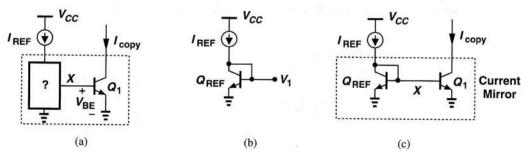


Figure 9.23 (a) Conceptual illustration of current copying, (b) voltage proportional to natural logarithm of current, (c) bipolar current mirror.

We must therefore seek a circuit whose output voltage is proportional to the natural logarithm of its input, i.e., the inverse function of bipolar transistor characteristics. Fortunately, a single diode-connected device satisfies (9.87). Neglecting the base-current in Fig. 9.23(b), we have

$$V_1 = V_T \ln \frac{I_{REF}}{I_{S,REF}},\tag{9.88}$$

where  $I_{S,REF}$  denotes the reverse saturation current of  $Q_{REF}$ . In other words,  $V_1 = V_X$  if  $I_{S,REF} = I_{S1}$ , i.e., if  $Q_{REF}$  is identical to  $Q_1$ .

Figure 9.23(c) consolidates our thoughts, displaying the current mirror circuitry. We say  $Q_1$  "mirrors" or copies the current flowing through  $Q_{REF}$ . For now, we neglect the base currents. From one perspective,  $Q_{REF}$  takes the actual logarithm of  $I_{REF}$  and  $Q_1$  takes the exponential of  $V_X$ , thereby yielding  $I_{copy} = I_{REF}$ . From another perspective, since  $Q_{REF}$  and  $Q_1$  have equal base-emitter voltages, we can write

$$I_{REF} = I_{S,REF} \exp \frac{V_X}{V_T}$$
 (9.89)

$$I_{copy} = I_{S1} \exp \frac{V_X}{V_T} \tag{9.90}$$

and hence

$$I_{copy} = \frac{I_{S1}}{I_{S,REF}} I_{REF}, \tag{9.91}$$

which reduces to  $I_{copy} = I_{REF}$  if  $Q_{REF}$  and  $Q_1$  are identical. This holds even though  $V_T$  and  $I_S$  vary with temperature. Note that  $V_X$  does vary with temperature but in such a way that  $I_{copy}$  does not.

Example 9.12 An electrical engineering student who is excited by the concept of the current mirror constructs the circuit but forgets to tie the base of  $Q_{REF}$  to its collector (Fig. 9.24). Explain what happens.

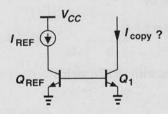


Figure 9.24

Solution

The circuit provides no path for the base currents of the transistors. More fundamentally, the base-emitter voltage of the devices is not defined. The lack of the base currents translates to  $I_{copy}=0$ .

**Exercise** What is the region of operation of  $Q_{REF}$ ?

444 Chapter 9 Cascode Stages and Current Mirrors

Example 9.13

Realizing the mistake in the above circuit, the student makes the modification shown in Fig. 9.25, hoping that the battery  $V_X$  provides the base currents and defines the base-emitter voltage of  $Q_{REF}$  and  $Q_1$ . Explain what happens.

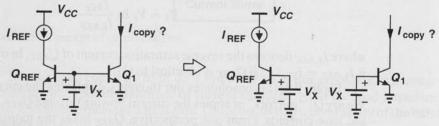


Figure 9.25

Solution

While  $Q_1$  now carries a finite current, the biasing of  $Q_1$  is no different from that in Fig. 9.21; i.e.,

$$I_{copy} = I_{S1} \exp \frac{V_X}{V_T}, \tag{9.92}$$

which is a function of temperature if  $V_X$  is constant. The student has forgotten that a diode-connected device is necessary here to ensure that  $V_X$  remains proportional to  $\ln(I_{REF}/I_{S,REF})$ .

Exercise

Suppose  $V_X$  is slightly greater than the necessary value,  $V_T \ln(I_{REF}/I_{S,REF})$ . In what region does  $Q_{REF}$  operate?

We must now address two important questions. First, how do we make additional copies of  $I_{REF}$  to feed different parts of an integrated circuit? Second, how do we obtain different values for these copies, e.g.,  $2I_{REF}$ ,  $5I_{REF}$ , etc.? Considering the topology in Fig. 9.22(c), we recognize that  $V_X$  can serve as the base-emitter voltage of multiple transistors, thus arriving at the circuit shown in Fig. 9.26(a). The circuit is often drawn as in Fig. 9.26(b) for simplicity. Here, transistor  $Q_j$  carries a current  $I_{copy,j}$ , given by

$$I_{copy,j} = I_{S,j} \exp \frac{V_X}{V_T}, \tag{9.93}$$

which, along with (9.87), yields

$$I_{copy,j} = \frac{I_{S,j}}{I_{S,RFF}} I_{REF}. \tag{9.94}$$

The key point here is that multiple copies of  $I_{REF}$  can be generated with minimal additional complexity because  $I_{REF}$  and  $Q_{REF}$  themselves need not be duplicated.

Equation (9.94) readily answers the second question as well: If  $I_{S,j}$  ( $\propto$  the emitter area of  $Q_j$ ) is chosen to be n times  $I_{S,REF}$  ( $\propto$  the emitter area of  $Q_{REF}$ ), then  $I_{copy,j} = nI_{REF}$ . We say the copies are "scaled" with respect to  $I_{REF}$ . Recall from Chapter 4 that this is equivalent to placing n unit transistors in parallel. Figure 9.26(c) depicts an example where  $Q_1$ - $Q_3$  are identical to  $Q_{REF}$ , providing  $I_{copy} = 3I_{REF}$ .

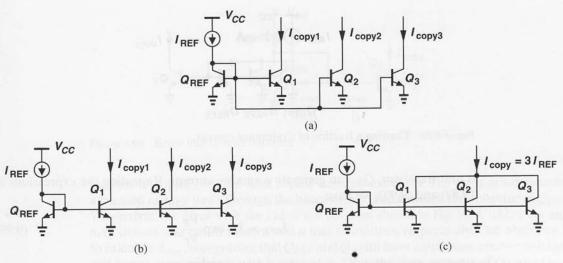


Figure 9.26 (a) Multiple copies of a reference current, (b) simplified drawing of (a), (c) combining output currents to generate larger copies.

# Example 9.14

A multistage amplifier incorporates two current sources of values 0.75~mA and 0.5~mA. Using a bandgap reference current of 0.25~mA, design the required current sources. Neglect the effect of the base current for now.

## Solution

Figure 9.27 illustrates the circuit. Here, all transistors are identical to ensure proper scaling of  $I_{REF}$ .

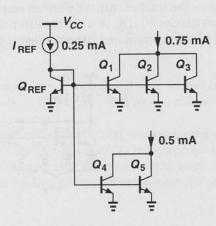


Figure 9.27

Exercise

Repeat the above example if the bandgap reference current is 0.1 mA.

The use of multiple transistors in parallel provides an accurate means of scaling the reference in current mirrors. But, how do we create *fractions* of  $I_{REF}$ ? This is accomplished by realizing  $Q_{REF}$  itself as multiple parallel transistors. Exemplified by the circuit in Fig. 9.28, the idea is to begin with a larger  $I_{S,REF}$  (=  $3I_S$  here) so that

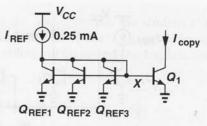


Figure 9.28 Copying a fraction of a reference current.

a unit transistor,  $Q_1$ , can generate a smaller current. Repeating the expressions in (9.89) and (9.90), we have

$$I_{REF} = 3I_S \exp \frac{V_X}{V_T} \tag{9.95}$$

$$I_{copy} = I_S \exp \frac{V_X}{V_T} \tag{9.96}$$

and hence

$$I_{copy} = \frac{1}{3}I_{REF}. (9.97)$$

## Example 9.15

It is desired to generate two currents equal to 50  $\mu$ A and 500  $\mu$ A from a reference of 200  $\mu$ A. Design the current mirror circuit.

# Solution

To produce the smaller current, we must employ four unit transistors for  $Q_{REF}$  such that each carries 50  $\mu$ A. A unit transistor thus generates 50  $\mu$ A (Fig. 9.29). The current of 500  $\mu$ A requires 10 unit transistors, denoted by  $10A_E$  for simplicity.

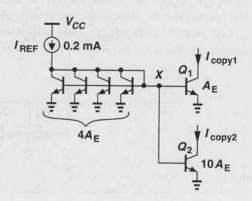


Figure 9.29

**Exercise** Repeat the above example for a reference current of 150  $\mu$ A.

**Effect of Base Current** We have thus far neglected the base current drawn from node X in Fig. 9.26(a) by all transistors, an effect leading to a significant error as the

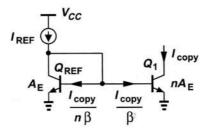


Figure 9.30 Error due to base currents.

number of copies (i.e., the total copied current) increases. The error arises because a fraction of  $I_{REF}$  flows through the bases rather than through the collector of  $Q_{REF}$ . We analyze the error with the aid of the diagram shown in Fig. 9.30, where  $A_E$  and  $nA_E$  denote one unit transistor and n unit transistors, respectively. Our objective is to calculate  $I_{copy}$ , recognizing that  $Q_{REF}$  and  $Q_1$  still have equal base-emitter voltages and hence carry currents with a ratio of n. Thus, the base currents of  $Q_1$  and  $Q_{REF}$  can be expressed as

$$I_{B1} = \frac{I_{copy}}{\beta} \tag{9.98}$$

$$I_{B,REF} = \frac{I_{copy}}{\beta} \cdot \frac{1}{n}. ag{9.99}$$

Writing a KCL at X therefore yields

$$I_{REF} = I_{C,REF} + \frac{I_{copy}}{\beta} \cdot \frac{1}{n} + \frac{I_{copy}}{\beta}, \tag{9.100}$$

which, since  $I_{C,REF} = I_{copy}/n$ , leads to

$$I_{copy} = \frac{nI_{REF}}{1 + \frac{1}{\beta}(n+1)}.$$
 (9.101)

For a large  $\beta$  and moderate n, the second term in the denominator is much less than unity and  $I_{copy} \approx nI_{REF}$ . However, as the copied current  $(\alpha n)$  increases, so does the error in  $I_{copy}$ .

To suppress the above error, the bipolar current mirror can be modified as illustrated in Fig. 9.31. Here, emitter follower  $Q_F$  is interposed between the collector of  $Q_{REF}$  and node X, thereby reducing the effect of the base currents by a factor of  $\beta$ . More specifically, assuming  $I_{C,F} \approx I_{E,F}$ , we can repeat the above analysis by writing

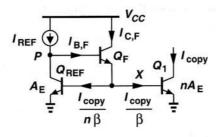


Figure 9.31 Addition of emitter follower to reduce error due to base currents.

a KCL at X:

$$I_{C,F} = \frac{I_{copy}}{\beta} + \frac{I_{copy}}{\beta} \cdot \frac{1}{n},\tag{9.102}$$

obtaining the base current of  $Q_F$  as

$$I_{B,F} = \frac{I_{copy}}{\beta^2} \left( 1 + \frac{1}{n} \right). \tag{9.103}$$

Another KCL at node P gives

$$I_{REF} = I_{B,F} + I_{C,REF} \tag{9.104}$$

$$=\frac{I_{copy}}{\beta^2}\left(1+\frac{1}{n}\right)+\frac{I_{copy}}{n}\tag{9.105}$$

and hence

$$I_{copy} = \frac{nI_{REF}}{1 + \frac{1}{\beta^2}(n+1)}.$$
 (9.106)

That is, the error is lowered by a factor of  $\beta$ .

## Example 9.16

Compute the error in  $I_{copy1}$  and  $I_{copy2}$  in Fig. 9.29 before and after adding a follower.

**Solution** Noting that  $I_{copy1}$ ,  $I_{copy2}$ , and  $I_{C,REF}$  (the total current flowing through four unit transistors) still retain their nominal ratios (why?), we write a KCL at X:

$$I_{REF} = I_{C,REF} + \frac{I_{copy1}}{\beta} + \frac{I_{copy2}}{\beta} + \frac{I_{C,REF}}{\beta}$$
(9.107)

$$=4I_{copy1} + \frac{I_{copy1}}{\beta} + \frac{10I_{copy1}}{\beta} + \frac{I_{C,REF}}{\beta}.$$
 (9.108)

Thus,

$$I_{copy1} = \frac{I_{REF}}{4 + \frac{15}{\beta}} \tag{9.109}$$

$$I_{copy2} = \frac{10I_{REF}}{4 + \frac{15}{\beta}}. (9.110)$$

With the addition of emitter follower (Fig. 9.32), we have at X:

$$I_{C,F} = \frac{I_{C,REF}}{\beta} + \frac{I_{copy1}}{\beta} + \frac{I_{copy2}}{\beta}$$
(9.111)

$$=\frac{4I_{copy1}}{\beta} + \frac{I_{copy1}}{\beta} + \frac{10I_{copy1}}{\beta} \tag{9.112}$$

$$=\frac{15I_{copy1}}{\beta}.\tag{9.113}$$

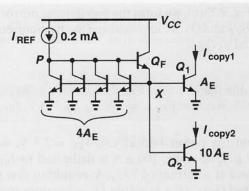


Figure 9.32

A KCL at P therefore yields

$$I_{REF} = \frac{15I_{copy1}}{\beta^2} + I_{C,REF} \tag{9.114}$$

$$=\frac{15I_{copy1}}{\beta^2} + 4I_{copy1},\tag{9.115}$$

and hence

$$I_{copy1} = \frac{I_{REF}}{4 + \frac{15}{\beta^2}} \tag{9.116}$$

$$I_{copy2} = \frac{10I_{REF}}{4 + \frac{15}{\beta^2}}. (9.117)$$

Exercise Calculate  $I_{copy1}$  if one of the four unit transistors is omitted, i.e., the reference transistor has an area of  $3A_E$ .

**PNP Mirrors** Consider the common-emitter stage shown in Fig. 9.33(a), where a current source serves as a load to achieve a high voltage gain. The current source can be realized as a *pnp* transistor operating in the active region [Fig. 9.33(b)]. We must therefore define the bias current of  $Q_2$  properly. In analogy with the *npn* counterpart

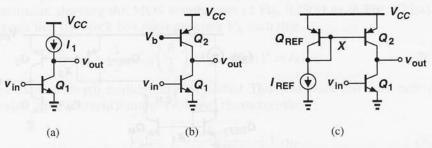


Figure 9.33 (a) CE stage with current-source load, (b) realization of current source by a pnp device, (c) proper biasing of  $Q_2$ .

of Fig. 9.23(c), we form the *pnp* current mirror depicted in Fig. 9.33(c). For example, if  $Q_{REF}$  and  $Q_2$  are identical and the base currents negligible, then  $Q_2$  carries a current equal to  $I_{REF}$ .

# Example 9.17

Design the circuit of Fig. 9.33(c) for a voltage gain of 100 and a power budget of 2 mW. Assume  $V_{A,npn}=5$  V,  $V_{A,pnp}=4$  V,  $I_{REF}=100~\mu$ A, and  $V_{CC}=2.5$  V.

### Solution

From the power budget and  $V_{CC}=2.5$  V, we obtain a total supply current of 800  $\mu$ A, of which 100  $\mu$ A is dedicated to  $I_{REF}$  and  $Q_{REF}$ . Thus,  $Q_1$  and  $Q_2$  are biased at a current of 700  $\mu$ A, requiring that the (emitter) area of  $Q_2$  be 7 times that of  $Q_{REF}$ . (For example,  $Q_{REF}$  incorporates one unit device and  $Q_1$  seven unit devices.)

The voltage gain can be written as

$$A_v = -g_{m1}(r_{O1}||r_{O2}) \bullet (9.118)$$

$$= -\frac{1}{V_T} \cdot \frac{V_{A,npn} V_{A,pnp}}{V_{A,npn} + V_{A,pnp}}$$
(9.119)

$$=-85.5.$$
 (9.120)

What happened here?! We sought a gain of 100 but inevitably obtained a value of 85.5! This is because the gain of the stage is simply given by the Early voltages and  $V_T$ , a fundamental constant of the technology and independent of the bias current. Thus, with the above choice of Early voltages, the circuit's gain cannot reach 100.

# **Exercise** What Early voltage is necessary for a voltage gain of 100?

We must now address an interesting problem. In the mirror of Fig. 9.23(c), it assumed that the golden current flows from  $V_{CC}$  to node X, whereas in Fig. 9.33(c) flows from X to ground. How do we generate the latter from the former? It is possible to combine the npn and pnp mirrors for this purpose, as illustrated in Fig. 9.34 Assuming for simplicity that  $Q_{REF1}$ ,  $Q_M$ ,  $Q_{REF2}$ , and  $Q_2$  are identical and neglecting the base currents, we observe that  $Q_M$  draws a current of  $I_{REF}$  from  $Q_{REF2}$ , thereby forcing the same current through  $Q_2$  and  $Q_1$ . We can also create various scaling scenarios between  $Q_{REF1}$  and  $Q_M$  and between  $Q_{REF2}$  and  $Q_2$ . Note that the base currents introduce a cumulative error as  $I_{REF}$  is copied onto  $I_{C,M}$ , and  $I_{C,M}$  onto  $I_{C,M}$ 

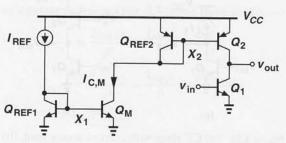


Figure 9.34 Generation of current for pnp devices.

Example 9.18

We wish to bias  $Q_1$  and  $Q_2$  in Fig. 9.34 at a collector current of 1 mA while  $I_{REF} = 25 \,\mu\text{A}$ . Choose the scaling factors in the circuit so as to minimize the number of unit transistors.

Solution

For an overall scaling factor of 1 mA/25  $\mu$ A = 40, we can choose either

$$I_{C,M} = 8I_{REF} \tag{9.121}$$

$$|I_{C2}| = 5I_{C,M} (9.122)$$

or

$$I_{C,M} = 10I_{REF} (9.123)$$

$$|I_{C2}| = 4I_{C.M}. (9.124)$$

(In each case, the *npn* and *pnp* scaling factors can be swapped.) In the former case, the four transistors in the current mirror circuitry require 15 units, and in the latter case, 16 units. Note that we have implicitly dismissed the case  $I_{C,M} = 40I_{C,REF1}$  and  $I_{C2} = I_{C,REF2}$  as it would necessitate 43 units.

Exercise

Calculate the exact value of  $I_{C2}$  if  $\beta = 50$  for all transistors.

Example 9.19

An electrical engineering student purchases two nominally identical discrete bipolar transistors and constructs the current mirror shown in Fig. 9.23(c). Unfortunately,  $I_{copy}$  is 30% higher than  $I_{REF}$ . Explain why.

Solution

It is possible that the two transistors were fabricated in different batches and hence underwent slightly different processing. Random variations during manufacturing may lead to changes in the device parameters and even the emitter area. As a result, the two transistors suffer from significant  $I_S$  mismatch. This is why current mirrors are rarely used in discrete design.

Exercise

How much  $I_S$  mismatch results in a 30% collector current mismatch?

#### 9.2.3 MOS Current Mirror

The developments in Section 9.2.2 can be applied to MOS current mirrors as well. In particular, drawing the MOS counterpart of Fig. 9.23(a) as in Fig. 9.35(a), we recognize that the black box must generate  $V_X$  such that

$$\frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_X - V_{TH1})^2 = I_{REF},\tag{9.125}$$

where channel-length modulation is neglected. Thus, the black box must satisfy the following input (current)/output (voltage) characteristic:

$$V_X = \sqrt{\frac{2I_{REF}}{\mu_n C_{ox} \left(\frac{W}{L}\right)_1}} + V_{TH1}. \tag{9.126}$$

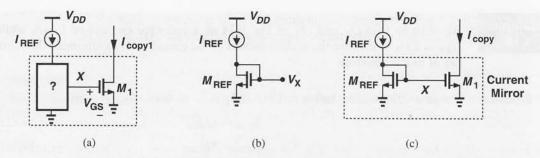


Figure 9.35 (a) Conceptual illustration of copying a current by an NMOS device, (b) generation of a voltage proportional to square root of current, (c) MOS current mirror.

That is, it must operate as a "square-root" circuit. From Chapter 6, we recall that a diode-connected MOSFET provides such a characteristic [Fig. 9.35(b)], thus arriving at the NMOS current mirror depicted in Fig. 9.35(c). As with the bipolar version, we can view the circuit's operation from two perspectives: (1)  $M_{REF}$  takes the square root of  $I_{REF}$  and  $M_1$  squares the result; or (2) the drain currents of the two transistors can be expressed as

$$I_{D,REF} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_{REF} (V_X - V_{TH})^2$$
 (9.127)

$$I_{copy} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_X - V_{TH})^2,$$
 (9.128)

where the threshold voltages are assumed equal. It follows that

$$I_{copy} = \frac{\left(\frac{W}{L}\right)_1}{\left(\frac{W}{L}\right)_{REF}} I_{REF},\tag{9.129}$$

which reduces to  $I_{copy} = I_{REF}$  if the two transistors are identical.

Example 9.20

The student working on the circuits in Examples 9.12 and 9.13 decides to try the MOS counterpart, thinking that the gate current is zero and hence leaving the gates floating (Fig. 9.36). Explain what happens.

#### Solution

This circuit is not a current mirror because only a diode-connected device can establish (9.129) and hence a copy current independent of device parameters and temperature. Since the gates of  $M_{REF}$  and  $M_1$  are floating, they can assume any voltage, e.g., an initial condition created at node X when the power supply is turned on. In other words,  $I_{copy}$  is very poorly defined.

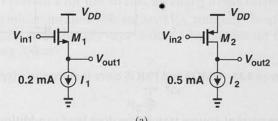
## Exercise

Is  $M_{REF}$  always off in this circuit?

Generation of additional copies of  $I_{REF}$  with different scaling factors also follows the principles shown in Fig. 9.26. The following example illustrates these concepts.

## Example 9.21

An integrated circuit employs the source follower and the common-source stage shown in Fig. 9.37(a). Design a current mirror that produces  $I_1$  and  $I_2$  from a 0.3-mA reference.



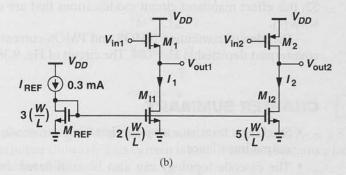


Figure 9.37

# Solution

Following the methods depicted in Figs. 9.28 and 9.29, we select an aspect ratio of 3(W/L) for the diode-connected device, 2(W/L) for  $M_{I1}$ , and 5(W/L) for  $M_{I2}$ . Figure 9.37(b) shows the overall circuit.

#### Exercise

Repeat the above example if  $I_{REF} = 0.8 \text{ mA}$ .

Since MOS devices draw a negligible gate current, MOS mirrors need not resort to the technique shown in Fig. 9.31. On the other hand, channel-length modulation in

<sup>&</sup>lt;sup>6</sup>In deep-submicron CMOS technologies, the gate oxide thickness is reduced to less than 30 Å, leading to "tunneling" and hence noticeable gate current. This effect is beyond the scope of this book.

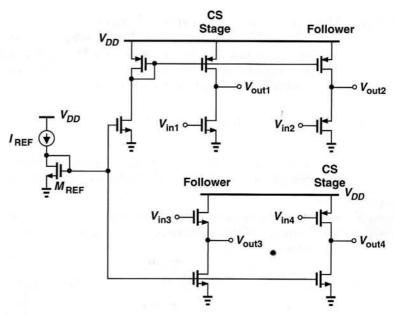


Figure 9.38 NMOS and PMOS current mirrors in a typical circuit.

the current-source transistors does lead to additional errors. Investigated in Problem 53, this effect mandates circuit modifications that are described in more advanced texts [1].

The idea of combining NMOS and PMOS current mirrors follows the bipolar counterpart depicted in Fig. 9.34. The circuit of Fig. 9.38 exemplifies these ideas.

# 9.3 CHAPTER SUMMARY

- Stacking a transistor atop another forms a cascode structure, resulting in a high output impedance.
- The cascode topology can also be considered an extreme case of source or emitter degeneration.
- The voltage gain of an amplifier can be expressed as -G<sub>m</sub>R<sub>out</sub>, where G<sub>m</sub> denotes the short-circuit transconductance of the amplifier. This relationship indicates that the gain of amplifiers can be maximized by maximing their output impedance.
- With its high output impedance, a cascode stage can operate as a high-gain amplifier.
- The load of a cascode stage is also realized as a cascode circuit so as to approach
  an ideal current source.
- Setting the bias currents of analog circuits to well-defined values is difficult. For
  example, resistive dividers tied to the base or gate of transistors result in supplyand temperature-dependent currents.
- If  $V_{BE}$  or  $V_{GS}$  are well-defined, then  $I_C$  or  $I_D$  are not.
- Current mirrors can "copy" a well-defined reference current numerous times for various blocks in an analog system.

#### **CURRENT MIRRORS**

#### 9.2.1 Initial Thoughts

The biasing techniques studied for bipolar and MOS amplifiers in Chapters 4 and 6 prove inadequate for high-performance microelectronic circuits. For example, the bias current of CE and CS stages is a function of the supply voltage—a serious issue because in practice, this voltage experiences some variation. The rechargeable battery in a cellphone or laptop computer, for example, gradually loses voltage as it is discharged, thereby mandating that the circuits operate properly across a *range* of supply voltages.

Another critical issue in biasing relates to ambient temperature variations. A cellphone must maintain its performance at  $-20^{\circ}$ C in Finland and  $+50^{\circ}$ C in Saudi Arabia. To understand how temperature affects the biasing, consider the bipolar current source shown in Fig. 9.21(a), where  $R_1$  and  $R_2$  divide  $V_{CC}$  down to the required  $V_{BE}$ . That is, for a desired current  $I_1$ , we have

$$\frac{R_2}{R_1 + R_2} V_{CC} = V_T \ln \frac{I_1}{I_S},\tag{9.83}$$

where the base current is neglected. But, what happens if the temperature varies? The left-hand side remains constant if the resistors are made of the same material and hence vary by the same percentage. The right-hand side, however, contains two temperature-dependent parameters:  $V_T = kT/q$  and  $I_S$ . Thus, even if the base-emitter voltage remains constant with temperature,  $I_1$  does not.

A similar situation arises in CMOS circuits. Illustrated in Fig. 9.21(b), a MOS current source biased by means of a resistive divider suffers from dependence on  $V_{DD}$  and temperature. Here, we can write

$$I_1 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$
(9.84)

$$= \frac{1}{2}\mu_n C_{ox} \frac{W}{L} \left( \frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2. \tag{9.85}$$

Since both the mobility and the threshold voltage vary with temperature,  $I_1$  is not constant even if  $V_{GS}$  is.

In summary, the typical biasing schemes introduced in Chapters 4 and 6 fail to establish a constant collector or drain current if the supply voltage or the ambient temperature are subject to change. Fortunately, an elegant method of creating supply-and temperature-independent voltages and currents exists and appears in almost all microelectronic systems. Called the "bandgap reference circuit" and employing several tens of devices, this scheme is studied in more advanced books [1].

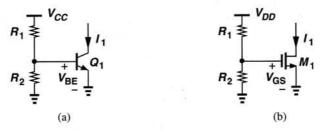


Figure 9.21 Impractical biasing of (a) bipolar and (b) MOS current sources.