Kode Makalah: C1-6

PENGENALAN KATA PADA PEMBICARAAN MENGGUNAKAN WAVELET

Heru Susanto ¹, Risanuri Hidayat ² dan Litasari ³

1,2,3. Jurusan Teknik Elektro, Fakultas Teknik, Universitas Gadjah Mada Yogyakarta Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281

E-mail: herususantojogja@gmail.com

Abstrak

Sistem pengenalan pembicaraan (*Speech Recognition*) terus mengalami peningkatan kemampuan agar mengenali pembicaraan secara baik untuk berbagai macam aplikasi. Penelitian ini bertujuan untuk mengembangkan dan menganalisis algoritma baru untuk pengenalan kata pada tutur menggunakan *wavelet*. Data diperolah dari responden yang diambil melalui proses perekaman meliputi data tutur kata sebagai *input* dan data tutur kalimat sebagai *template*. Proses penelitian dimulai dengan perekaman dan hasilnya disimpan dalam format *file.wav*. Selanjutnya data tutur kata diproses melalui beberapa tahap diantaranya adalah *End-Point-Detection*, *HPF 200Hz*, *Pre-Emphasis* dan ekstraksi ciri menggunakan *Wavelet Daubechies* 3 level. Begitupula dengan data tutur kalimat diproses dengan proses yang sama dengan tambahan adanya proses *Voice/Un-Voice Detection* setelah *pre-emphasis*, sebelum ekstraksi ciri. Selanjutnya hasil dari ekstraksi ciri ini dicocokkan untuk proses pengenalan kata menggunakan metode *DTW*. Hasil dari penelitian ini menunjukkan bahwa Proses *Voice/Un-Voice detection* dapat digunakan sebagai langkah untuk dapat memotong kalimat menjadi kata kata dan menunjukkan hasil pengujian sebesar 93.9% dari kata yang berhasil dipisahkan-pisahkan, sehingga sangat akurat dalam melakukan pemotongan kalimat menjadi kata. Sedangkan hasil pengujian pengenalan kata dengan melakukan pencocokan kata menggunakan DTW menunjukkan hasil 70% antara sinyal *input* dan sinyal *template*.

Keywords: Speech Recognition, End Point Detection, Voiced/Un-Voiced Detection, DTW, Wavelet Features Extraction

1. Pendahuluan

Sistem pengenalan pembicaraan (Speech Recognition) pada aplikasi komputer sekarang sudah bukan merupakan hal yang baru. Banyak penelitian yang dilakukan untuk terus meningkatkan kemampuan pengenalan pembicaraan.[1].

Pada dasarnya *Speech Recognition* adalah proses otomatis penggalian dan penentuan informasi linguistik yang disampaikan dengan sinyal pembicaraan menggunakan komputer atau sirkuit elektronik. Metode pengenalan suara yang telah diteliti selama bertahuntahun memiliki prinsip utama yang ditujukan untuk perwujudan transkripsi dan sistem interaksi manusia dan komputer. [2]

Awalnya pengenalan pola suara menggunakan aturan tata bahasa. Tetapi pada perkembangan aturan ini tidak efektif karena memiliki kelemahan untuk mengenali jeda antara dua kata dalam suatu pembicaraan. Oleh karena itu akhirnya digunakan metode statistik untuk

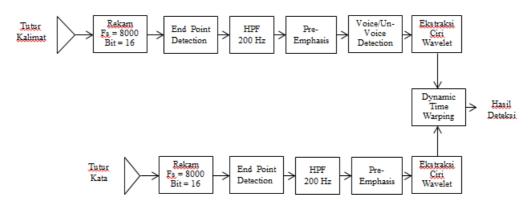
mendapatkan akurasi yang baik dalam pengenalan pola suara.[2]

Pada penelitian ini akan dilakukan proses pengenalan kata pada suatu pembicaraan yang dilakukan secara real-time menggunakan ekstraksi ciri gelombang pendek (wavelet) dan proses pencarian kemiripan sinyal mengunakan DTW (Dynamic Time Warping). Gambaran umum dalam penelitian ini adalah adanya dua buah sinyal tutur yang pertama berupa kalimat yang berisi beberapa kata dan kedua adalah tutur kata yang digunakan sebagai kata kunci (keyword). Baik sinyal tutur kalimat maupun sinyal tutur kata direkam secara real-time (langsung dari orang tertentu pada saat yang diinginkan).

Proses berikutnya adalah masing-masing sinyal turur baik kalimat maupun kata dilakukan proses awal berupa *End Point Detection* yang bertujuan untuk mengetahui awal dan akhir dari tutur kata maupun kalimat. Keluaran dari proses *End-Point Detection* selanjutnya adalah proses *High Pass Filter* 200Hz

(HPF 200Hz) yang berfungsi untuk meloloskan frequensi 200Hz ke atas dan membuang frekuensi dibawah 200Hz. Disamping itu juga HPF 200Hz ini juga bertujuan untuk membuang komponen dc, membuang hum frekuensi rendah, dan membuang noise yang mungkin ditimbulkan oleh sinyal tutur.[3] Hasil dari HPF 200Hz selanjutnya dilakukan proses Pre-emphasis yang bertujuan sebagai low pass filter untuk membuang frekuensi di atas 4000Hz karena dianggap bukan sinyal tutur (bising).

Setelah proses awal pada masing-masing sinval tutur kalimat dan sinyal tutur kata maka proses berikutnya adalah melakukan menentukan tutur kata-kata yang terdapat pada tutur kalimat. Keluaran sinyal tutur kalimat diproses menggunakan metode Voice/Un-voice Detection yang bertujuan untuk mendapatkan sinyal turur kata-kata yang terdapat pada kalimat pembicaraan setelah dilakukan pemrosesan awal. Keluaran dari Voice/Un-voice Detection adalah sinyal tutur kata-kata yang sudah terpisahkan dari sinyal tutur kalimat yang disimpan dalam formal file.wav. Dan selanjutnya baik sinyal tutur kata sebagai input (keyword) dan sinyal turur kata dari kalimat yang sudah terpisahkan (template) dilakukan proses ekstraksi menggunakan Wavelet **Daubechies** dengan menggunakan 3 level. Dengan mencari besarnya ratarata energi pada masing-masing level dekomposisi maka didapatkanlah ciri yang mewakili tutur kata baik dari input maupun dari template.


Proses terakhir adalah mencari kemiripan sinyal turur dari sinyal tutur *input* dan sinyal tutur *template* yang telah diketahui cirinya masing-masing dengan menggunakan metode DTW (*Dynamic Time Warping*).

Dengan mencari jarak minimum dari proses DTW pada masing-masing tutur input dan template maka kemiripan didapatkanlah sinyal tutur yang menunjukkan bahwa dalam template tersebut terdapat kata yang sama dengan tutur pada input (keyword). Mengingat bahwa belum banyak penelitian yang dikembangkan pengenalan kata pada pembicaraan secara *real-time* maka diharapkan penelitian ini nanti akan dapat memberikan *output* berupa pengembangan algoritma baru untuk pengenalan kata dalam pembicaraan secara real-time yang berbasis pada ekstraksi ciri wavelet.

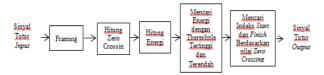
Penelitian ini juga diharapakan akan mampu memberikan *trigger* bagi pengembangan pengenalan kata pada pembicaraan secara *real-time* berbasis *wavelet* yang dapat digunakan untuk instruksi gerakan robot menggunakan tutur secara *real-time* yang tahan terhadap *noise* maupun juga dapat dikembangkan untuk pengembangan *password* dengan menggunakan tutur pembicaraan.

2. Metodologi

Penelitian ini adalah penelitian rancang bangun sebuah sistem yang dapat mengenali kata-kata tertentu pada pembicaraan yang dilakukan secara *real-time* dengan menggunakan ekstraksi ciri berbasis gelombang singkat (*Wavelet*). Sinyal tutur terdiri dari dua sinyal tutur yaitu sinyal yang berisis tutur kalimat (*template*) dan sinyal tutur yang berupa kata sebagai *keyword* (*input*). Sehingga alur sistem yang dibangun dapat digambarkan secara blog diagram seperti terdapat pada Gambar 1.

Gambar 1. Blog Diagram Pengenalan Kata

2.1. Perekaman Tutur


Perekaman tutur dilakukan secara *real-time* (secara langsung) dengan menggunakan frekuensi *sampling* Fs = 8000, dan bit =16. Perekaman dilakukan dua tahap yaitu perekaman berupa tutur kalimat dengan waktu 4

detik dan hasilnya disimpan dalam bentuk *file.wav*. Sinyal tutur inilah yang akan digunakan sebagai sinyal *template*. Sedangkan perekaman kedua adalah perekaman tutur berupa kata yang menjadi *keyword* (*input*) dari salah satu kata yang terdapat pada sinyal

tutur *template*. Begitupula hasil perekaman kata disimpan dalam bentuk *file .wav*.

2.2. End Point Detection

Proses *End-Point-Detection* (EPD) bertujuan untuk menentukan letak awal dan akhir dari sinyal tutur *template* maupun sinyal tutur *input* yang telah disimpan dalam bentuk *file.wav*. Secara blog diagram proses *End-Point-Detection* dapat dilihat pada gambar 2 berikut ini:

Gambar 2. Blog Diagram Proses EPD

2.3. HPF 200Hz

Sinyal tutur yang telah dilakukan proses *End-Point-Detection* selanjutnya di buang noise nya menggunakan filter frekuensi tinggi (*High Pass Filter/HPF*) 200Hz. Tujuannya adalah untuk membuang komponen dc, membuang hum frekuensi rendah, dan membuang noise yang mungkin ditimbulkan oleh sinyal tutur.[3] HPF 200Hz terdiri dari dua *poles* dan dua *zeros* dan persamaan fungsi alihnya dapat dinyatakan sebagai berikut:

$$H(z) = \frac{1 - 2z^{-1} + z^{-2}}{1 - 2e^{-aT}\cos(bT)z^{-1} + e^{-2aT}z^{-2}}$$
(1)

Dimana:

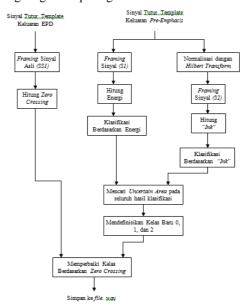
 $a = 130 * 2\pi$

 $b = 200 * 2\pi$

 $T = 10^{-4}$

2.4. Pre-Emphasis

Proses *pre-emphasis* adalah proses yang didesain untuk mengurangi efek tidak baik dari transmisi dan gangguan suara latar. Perhitungan proses pre-emphasis dilakukan pada saat sampel sinyal digital suara berada pada domain waktu. [4]


Adapun perumusan untuk proses *pre-emphasis* dituliskan:

$$y n = x n - \alpha x[n-1] \tag{2}$$

di mana, x adalah nilai sinyal digital sebelum proses pre-emphasis y adalah nilai sinyal setelah proses pre-emphasis α adalah nilai koefisien pre-emphasis yang berkisar $0.95 \le \alpha \le 1$.

2.5. Voice/Un-Voice Detection

Proses *Voice/ Un-Voice detection* bertujuan untuk memisahkan sinyal tutur berupa kalimat pembicaraan keluaran dari *Pre-Emphasis* menjadi bagian kata demi kata. Salah satu langkah yang digunakan adalah dengan mengenali sinyal tutur kalimat tersebut berdasarkan kategori *Voice* dan *Un-Voice*. Adapun proses *Voice/Un-Voice detection* dapat dijelaskan berdasarkan blog diagram seperti gambar 3 berikut ini:

Gambar 3. Blog Diagram Proses UV/V Detection

Parameter energi adalah ukuran dari amplitude sinyal pada masing-masing *frame* n yang di tentukan dengan persamaan :

$$E_n = \sum_{k=1}^{160} s^2 (k, n)$$
(3)

Dalam sebagaian besar kasus, bahwa *Voiced Speech* memiliki amplitudo yang lebih besar dari pada *Un-Voiced Speech* dan termasuk bagian *Silent* yang didefinisikan sebagai kondisi tanpa adanya amplitudo. [5] Sehingga *Energy* sangat cocok digunakan untuk klasifikasi awal sinyal tutur proses *Voice/Un-Voice detection*.

Parameter "Ink" digunakan untuk meningkatkan proses klasifikasi awal secara iteratif. Parameter "Ink" ini mengukur besarnya Optical Density dari plot sinyal tutur dan mencerminkan kegoyangan, yang merupakan hasil dari jumlah frekuensi luar dan jumlah Zero-Crossing. [3] Hasil dari parameter "Ink" ditentukan dengan persamaan:

$$Ink_n = \sum_{k=1}^{160} \sqrt{[y(k) - y(k-1)]^2 + 1}$$
(4)

Setelah menghitung besarnya energy dan "Ink" maka langkah selanjutnya pada proses klasifikasi ini adalah mengatur atau menentukan besarnya nilai ambang batas (thresholding). Untuk energi, dua threshold yang ditetapkan, sedangkan parameter "Ink" dibandingkan dengan satu threshold.[5]

Pada penelitian ini hanya digunakan dua klasifikasi sinyal saja berdasarkan parameter energy untuk ditentukan besarnya nilai ambang batas (thresholding) yaitu Voiced dengan nilai 2 dan Un-Voiced dengan nilai 1 dan 0. Untuk menentukan nilai thresholds yang sesuai maka dilakukan dengan melakukan tes percobaan codec tutur menggunakan skema encoding yang berbeda untuk voiced, unvoiced dan silent. [5]

Hasil terbaik dicapai dengan rata-rata logar<u>itma dari</u> energi secara keseluruhan sinyal tutur, $log_{10}E$, sebagai ambang batas atas untuk teks yang diucapkan terus-menerus. Namun, jika banyak terjadi kondisi diam, batas atas kemudian harus lebih rendah. Semakin rendah ambang batas akan mendefinisikan batas antara *Unvoiced* dan <u>Silent</u>, harus ditetapkan pada nilai

kurang lebih 2
$$\sqrt{\log_{10} E}$$
.[5]

Threshold untuk parameter "Ink" hanya ditetapkan satu saja. Alasannya adalah untuk normalisasi dari daerah silent yang menyebabkan sisa Background Noise untuk mendapatkan amplitudo yang sama seperti pada daerah voiced dan daerah unvoiced. Normalisasi Background Noise disalahtafsirkan sebagai unvoiced karena kebimbangannya. Dengan demikian, parameter "Ink" hanya membedakan antara segmen Voiced dan Unvoiced. Sedangkan untuk klasifikasi silence, hanya parameter energi saja yang diperhitungkan. Nilai dari Log_{10(Ink)} telah terbukti menjadi nilai threshold yang berguna untuk parameter "Ink".[5]

Pada saat terjadi transisi antara sinyal tutur satu ke yang lainnya sering terjadi adanya daerah tidak tentu atau *uncertain interval*. Sehingga harus dipastikan bahwa daerah tersebut tidak masuk ke dalam parameter energy dan juga ink sehingga perlud dilakukan perbaikan atau koreksi. Perbaikan dapat dilakukan dengan mencari *Capstral Coefficient* dengan persamaan:

$$c(i) = a(i) + \frac{1}{i} \sum_{k=1}^{i-1} k c(k) a(i-k), \quad 0 < i \le N_p$$
(5)

Dengan $\alpha(i)$ adalah koefisien LPC dan N_p sebagai orde filter dari *linear prediction*. Berikutnya adalah menentukan *Captral Distance* dengan persamaan

$$d_{cep} = 10 \log_{10}(e) \sqrt{2 \sum_{i=1}^{N_p} (c(i) - c'(i))^2} \quad [dB]$$

$$0 < i \le N_p$$
(6)

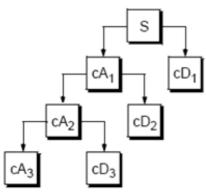
Capstral Distance mengukur spectral similarity dari dua buah frame. Sehingga dari sini uncertain interval dapat dicari dengan rerata dari Capstral Distance dan perkecualian perbaikan Uncertain Interval.

Untuk mendapatkan pemisahan yang baik maka dalam penelitian ini juga dilakukan perhitungan zero crossing dari sinyal tutur kalimat *original*. Kata original mengacu pada sinyal tutur yang belum mengalami pre processing sehingga diambil dari keluaran EPD. Hasil zero crossing selanjutnya akan menjadi sinyal perbaikan terhadap hasil dari proses kalsifikasi energy dan Ink.

Selanjutnya hasil perbaikan terakhir menghasilkan klasifikasi berupa *voiced* dipisah-pisahkan menjadi sinyal tutur kata yang akhirnya juga disimpan menggunakan *file.wav* yang selanjutnya akan dilakukan proses ekstraksi cirri menggunakan *wavelet*.

2.6. Ekstraksi Ciri Wavelet

Salah satu alternatif untuk analisis waktu-frekuensi secara simultan adalah dengan menggunakan metode Transformasi Wavelets. Hal terpenting yang membedakan transformasi wavelets dengan transformasi fourier adalah sebagai berikut [6]:

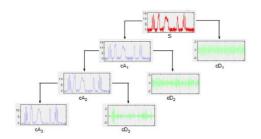

- Menggunakan fungsi basis dengan domain waktu terbatas. Hal ini berarti fungsi basisnya merupakan fungsi aperiodik.
- 2.Fungsi basis digeser dan diskalakan secara simultan / bersamaan.

Transformasi wavelet dapat dinyatakan sebagai berikut

$$X(a,b) = \frac{1}{\sqrt{|\alpha|}} \int_{-\infty}^{\infty} x(t) \cdot \psi\left(\frac{t-b}{a}\right) dt \; ; \quad \alpha \neq 0, \qquad a,b \in \mathbb{R}$$
 (7)

Fungsi ψ $\begin{pmatrix} t-b \\ a \end{pmatrix}$ disebut *mother wavelet*. Parameter a disebut parameter skala dan berkaitan dengan resolusi. Nilai a yang sangat kecil berkaitan dengan tingkat detail yang tinggi yang dapat dianalisis dari fungsi x(t). Parameter b adalah parameter geser. Bertujuan untuk posisi/lokasi pada sumbu waktu $t_{-[6]}$

Dekomposisi

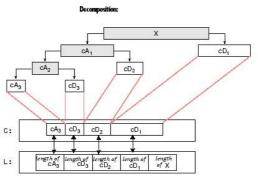

Gambar 4. Pohon Dekomposisi Wavelet

Sinyal dapat didekomposisi ke dalam bagian detail (cD), yang mengandung frekuensi tinggi dan bagian aproksimasi (cA) yang mengandung frekuensi rendah. Jika kita lakukan lagi proses dekomposisi, maka bagian yang akan diproses adalah bagian aproksimasi.[7] Proses ini disebut pohon dekomposisi *Wavelet* dan dapat dilihat pada Gambar 4 berikut

Dari Gambar 4 dapat direpresentasikan ke dalam persamaan di bawah ini

$$S = cD1 + cA1$$

= $cD1 + cD2 + cA2$
= $cD1 + cD2 + cD3 + cA3$

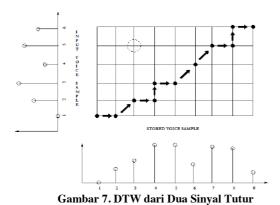

Proses tersebut dapat lebih jelas dimengerti jika dilihat pada gambar 5 , suatu sinyal di dekomposisi ke dalam 3 level. [5]

Gambar 5. Suatu Sinyal Didekomposisi ke Dalam 3 Level

Dari hasil dekomposisi inilah yang selanjutnya dapat ditentukan cirri dari suatu sinyal tutur salah satunya adalah dengan mencari besarnya pada energi pada komponen Aproksimasi (CA) dan komponen Detail (CD) seperti yang terdapat pada gambar 6.

Dari Gambar 6, bahwa untuk *Wavelet* 3 level maka didapatkan 4 macam nilai ciri yang diperoleh dari nilai total energy dari cA3, cD3, cD2, dan cD1.

Gambar 6. Penentuan Ciri pada Wavelet 3 Level


2.7. DTW (Dynamic Time Warping)

Satu masalah yang cukup rumit dalam speech recognition (pengenalan tutur) adalah proses perekaman yang terjadi seringkali berbeda durasinya, biarpun kata atau kalimat yang diucapkan sama. Bahkan untuk satu suku kata yang sama atau vocal yang sama seringkali proses perekaman terjadi dalam durasi yang berbeda. Sebagai akibatnya proses matching antara sinyal uji dengan sinyal referensi (template) seringkali tidak menghasilkan nilai yang optimal.

Sebuah teknik yang cukup popular di awal perkembangan teknologi pengolahan sinyal wicara adalah dengan memanfaatkan sebuah teknik dynamicprogramming yang juga lebih dikenal sebagai Dynamic Time Warping (DTW). Teknik ini ditujukan untuk mengakomodasi perbedaan waktu antara proses perekaman saat pengujian dengan yang tersedia pada template sinyal referensi. Prinsip dasarnya adalah dengan memberikan sebuah rentang 'steps' dalam ruang (dalam hal ini sebuah frame-frame waktu dalam sample, frame-frame waktu dalam template) dan digunakan untuk mempertemukan lintasan yang menunjukkan local match terbesar (kemiripan) antara time frame yang lurus. Total 'similarity cost' yang diperoleh dengan algorithm ini merupakan sebuah indikasi seberapa bagus sample dan template ini memiliki kesamaan, yang selanjutnya akan dipilih bestmatching template.

DTW (*DynamicTime Warping*) adalah metode untuk menghitung jarak antara dua data *time series*. Keunggulan DTW dari metode jarak yang lainnya adalah mampu menghitung jarak dari dua vektor data dengan panjang berbeda. [6]

DTW untuk dua buah sinyal tutur dapat diilustrasikan sesuai dengan gambar 7 berikut:

Matrik dari ordo n dengan m dibuat dengan elemen (i, j) adalah jarak d (a_i, b_j) antara titik a_i dan b_j dari dua waktu seri. Komputasi Euclidean digunakan untuk mengukur jarak antara ciri input (tutur kata) dan template (tutur kalimat yang sudah dipisah menjadi kata). [8] Adapun persamaan untuk menghitung jarak menggunakan komputasi Euclidean adalah sebagai berikut:

$$D(i,j) = \min[D(i-1,j-1), D(i-1,j), D(i,j-1)] + d(i,j)$$
(8)

Adapun proses terakhir dari deteksi kata ini adalah mencari jarak minimum dari proses DTW dari masingmasing ciri sinyal turur *input* (*keyword*) dengan masing-masing tutur *template* yang sudah dipisahpisah. Kemiripan turur *input* dengan tutur *template* adalah yang *jaraknya paling minimum*.

Metode Pengumpulan Data

Data diperoleh dengan melakukan perekaman tutur dari responden berupa kalimat pembicaraan sebagai template dan tutur berupa kata (keyword) sebagai input. Perekaman dilakukan secara real-time menggunakan laptop VAIO dengan frekuensi sampling 8000Hz. Besarnya waktu perekaman untuk data kalimat adalah 4 detik dan data berupa kata selama 1 detik. Selanjutnya hasil perekaman isyarat tutur ini disimpan dalam format file.wav. Adapun jenis kalimat dan kata yang direkam sebagai data dari sesorang dapat dilihat pada tabel 1 dan tabel 2 berikut ini.

Tabel 1. Kalimat Pembicaraan yang direkam

No.	Jenis kalimat yang direkam
1	Kanan dan Kiri
2	Kiri dan Kanan
3	Maju dan Mundur
4	Jalan Pagi Sehat
5	Turun dan Naik
6	Ada Atas Ada Bawah
7	Bawah Meja Ada Kucing
8	Jalan Belok Kiri dan Kanan
9	Ayo Naik Tingkat Semua
10	Putar Kanan Belok Kiri

Tabel 2. Kata yang direkam sebagai keyword

No.	Jenis kalimat yang direkam
1	Kanan
2	Kiri
3	Маји
4	Mundur
5	Jalan
6	Naik
7	Turun
8	Atas
9	Bawah
10	Belok

Selanjutnya data berupa tutur *input* digunakan sebagai kata yang digunakan untuk mendeteksi keberadaan kata yang terdapat pada kalimat pembicaraan tersebut. Misalnya akan digunakan kata "rajin" untuk mendeteksi kata "rajin" yang terdapat pada kalimat "Rajin Pangkal Pandai Malas Pangkal Bodoh". Berikut kata yang lain juga dilakukan untuk mendeteksi kata dalam kalimat yang ada kata itu.

Metode Analisis Data

Ada dua tahapan proses dalam pengenalan kata pada pembicaraan *real-time* ini yaitu tahapan pengenalan dan tahap pengujian. Tahapan pelatihan adalah tahapan untuk melatih atau mengajari sistem untuk mengenali ciri umum dari sinyal tutur. Dalam hal ini digunakan ekstraksi ciri *Wavelet Daubechies*. Sedangkan tahapan pengujian adalah tahapan untuk mengetahui kemampuan pengenalan kata yang dapat dilakukan oleh sistem berdasarkan tahapan pelatihan yang dilakukan. Dalam hal ini digunakan DTW sebagai proses pengenalan kata dengan mencari jarak minimum dari DTW.

3. Hasil Dan Pembahasan

Pengukuran unjuk kerja dari sistem pengenalan kata pada pembicaraan secara *real-time* dilakukan dengan mencari persentase kesalahan pencocokan yang menyatakan probabilitas terjadinya kesalahan pada sistem yang telah dibuat.

Pada pengujian ini penulis menggunakan 3 orang responden yang masing-masing mengucapkan berupa kalimat pembicaraan sesuai tabel 1 dan kata *keyword* sesuai dengan tabel 2 sebagai data pengujian.

Ada beberapa pengujian yang dilakukan pada penelitian ini diantaranya adalah

- 1. Pengujian pada proses *Voice/Un-Voice Detection* kalimat pembicaraan.
- 2. Pengujian pada hasil ekstraksi ciri menggunakan *Wavelet Debicies* 3 level baik pada tutur *input* dan tutur *template*.
- 3. Pengujian pada proses pencocokan menggunakan DTW.

Pengujian Voice/Un-Voice Detection

Pengujian pada proses *Voice/Un-Voice Detection* dilakukan untuk mengetahui banyaknya kata-kata dari kalimat tutur yang diucapkan.

Data dari kalimat pembicaraan responden diambil dan dihitung hasil ketepatan system dalam memisahkan kata-kata yang terdapat dalam kelimat tersebut. Persentase responden menunjukkan selisih absolut antara jumlah kata yang seharusnya terdapat pada kalimat pembicaraan dari responden dengan jumlah kata yang dapat dideteksi oleh sistem. Sebagai contoh pada kalimat "kanan dan kiri" terdapat 3 kata yaitu "kanan", "dan", dan "kiri" sehingga seharusnya pemotongannya terdapat 3 kata tersebut, tidak boleh kurang dan tidak boleh lebih.

Akurasi data uji diperoleh dengan mencari perbandingan antara data seharusnya dengan data hasil pengujian dan dikalikan dengan persentase 100% sehingga diperoleh persentase akurasi data dan berikut hasil pengujiannya seperti pada tabel 3.

Tabel 3. Hasil Pengujian pada V/UV Detection

No.		Responden			Akurasi Data	
	Kalimat	A	В	C	Uji (%)	
		(%)	(%)	(%)		
1	Pertama	100	100	100	100	
2	Kedua	100	100	100	100	
3	Ketiga	100	100	100	100	
4	Keempat	66.7	100	100	88.9	
5	Kelima	100	100	100	100	
6	Keenam	100	75	75	83.3	
7	Ketujuh	50	75	75	66.7	
8	Delapan	100	100	100	100	
9	Sembilan	100	100	100	100	
10	Sepuluh	100	100	100	100	

Sehingga keberhasilan pengujian pemenggalan kalimat menjadi kata kata dengan *Voice/Un-Voice Detection* adalah 93.9%.

Pengujian Ekstraksi Ciri Wavelet Debicies 3 level.

Pengujian pada proses ekstraksi ciri menggunakan Wavelet Daubechies 3 level digunakan untuk mengetahui ciri pada masing-masing kata (keyword) sebagai data input dan juga ciri pada masing-masing kata hasil dari proses Voice/ Un-Voice Detection yang merupakan data template.

Pada Tabel 4 ditampilkan hasil ekstraksi ciri pada tutur berupa menggunakan *wavelet debicies 3 level*.

Pengujian Pencocokan Kata Menggunakan DTW

Pengujian terakhir adalah pencocokan kata *input* (keyword) dengan kata pada kalimat pembicaraan (template) menggunakan *Dynamic Time Warping* (DTW).

Tabel 4. Contoh Hasil Ekstraksi Ciri

No	Kata (Tutur)	E-cA3	E-cD3	E-cD2	E- cD1
1	Kiri	0.007795	0.027435	0.013842	0.001611
2	Kanan	0.0227	0.0046	0.0005	0.0006
3	Maju	0.0073	0.0341	0.0137	0.0012
4	Jalan	0.0023	0.0165	0.0072	0.0015
5	Belok	0.0096	0.0484	0.023	0.0017

Hasil ekstraksi ciri dari kata input dicocokkan pada masing-masing kata yang terdapat pada kalimat yang sudah dipisahkan menjadi potongan kata kata yang juga sudah di ekstraksi ciri. Kecocokan antara kata input dan template di dapatkan dari nilai jarak minimum yang didapatkan dari proses DTW. Dan hasil dari proses pencocokan ini tertuang dalam tabel 5 berikut ini.

Tabel 5. Hasil Pencocokan Kata dengan DTW

•			Responden			Akurasi
N	Kalimat	Keyword	A	В	C	Data Uji
0			(%)	(%)	(%)	(%)
1	Pertama	Kiri	100	100	100	100
2	Kedua	Kanan	100	100	0	66.7
3	Ketiga	Maju	100	0	100	66.7
4	Keempat	Jalan	100	100	100	100
5	Kelima	Turun	100	100	100	100
6	Keenam	Atas	100	0	100	66.7
7	Ketujuh	Bawah	100	0	100	66.7
8	Kedelapan	Belok	100	0	100	66.7
9	Kesemblian	Naik	0	100	0	33.3
10	Sepuluh	Putar	0	0	100	33.3

Keterangan:

100% menunjukkan ketepatan dalam mendeteksi kata, dan 0% menunjukkan ketidaktepatan dalam mendeteksi kata. Sehingga keberhasilan pencocokan antara kata input dengan kalimat pembicaraan sebagai tempalate adalah 70%.

4. Kesimpulan

Berdasarkan uraian dari penelitian ini dapat disimpulkan bahwa Proses Voice/Un-Voice Detection dapat digunakan sebagai langkah untuk dapat memotong kalimat menjadi kata kata dan menunjukkan hasil pengujian sebesar 93.9% sehingga cukup akurat dalam melakukan pemotongan kata. Proses pencocokan kata dapat dilakukan dengan mencocokkan antara kata tutur sebagai input dengan masing-masing kata yang terdapat pada kalimat (template) yang sebelumnya telah dilakukan ekstraksi ciri menggunakan Wavelet Daubechies 3 level. Hasil pengujian pengenalan kata dengan melakukan

pencocokan kata menggunakan DTW menunjukkan hasil 70%.

Daftar Pustaka

- [1]. Agustinus Noertjahyana dan Rudy Adipranata. "Implementasi Sistem Pengenalan Suara Menggunakan SAPI 5.1 dan DELPHI 5", Skripsi Teknik Informatika, Universitas Kristen Petra, 2003.
- [2]. Nitin Trivedi, Dr. Vikesh Kumar, Saurabh Singh, Sachin Ahuja, Raman Chadha. "Speech Recognition by Wavelet Analysis". *International Journal of Computer Applications*, February 2011.
- [3]. Atal Bishnu S and Rabiner Lawrence R. "A Pattern Recognition Approach to Voiced-Unvoiced-Silence Classification with Application to Speech Recognition", IEEE Journal, 1976.
- [4]. Lukman Achmad, "Klasifikasi Nyamuk Berdasarkan Suaranya Dengan Metode *Mel*

- Frequency Cepstral Coefficient dan Jaringan Syaraf Tiruan". Thesis, Jurusan Ilmu Komputer dan Elektronika, UGM, 2013.
- [5]. Hoelper C, Frankort A, Erdmann C, and Vary P. "A Novel Voiced / Unvoiced / Silence Classification Scheme for Offline Speech Coding", Aachen University of Technology, Institute of Communication Systems and Data Processing.
- [6]. L. Chruszczyk, "Wavelet Transform in Fault Diagnosis of Analogue Electronic Circuits", InTech-Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology p. 197, 2012
- [7]. M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, "Wavlet Toolbox User's Guide", The MathWorks, Inc., 1996.
- [8]. Mohan Bhadragiri Jagan and N Ramesh babu. "Speech Recognition using MFCC and DTW", VIT University Vellore India School of Electrical Engineering.

SEMINAR NASIONAL TEKNIK ELEKTRO (SNTE 2014)

Kamis, 18 Desember 2014, Gedung Q Lantai 3 Politeknik Negeri Jakarta Kampus Baru Universitas Indonesia, Depok

BUKU PROSIDING

Tema:

Peningkatan Kualitas Sumber Daya Manusia Melalui Penelitian Teknologi Tepat Guna yang Berwawasan Lingkungan

Diterbitkan Oleh:
Jurusan Teknik Elektro
Politeknik Negeri Jakarta
Kampus Baru Universitas Indonesia, Depok
2014

DIPUBLIKASIKAN OLEH:

Jurusan Teknik Elektro Politeknik Negeri Jakarta snte@elektro.pnj.ac.id

telepon : (021)7863531 faksimil :(021)7863531

KETUA EDITOR

Dra. B. S. Rahayu Purwanti, M. Si

ANGGOTA

Mohamad Fathurahman, S.T., M.T Asri Wulandari, S.T., M.T

TEAM PENDUKUNG Eddy Ubaidillah, A.Md.

Semua paper dalam buku ini telah diseleksi oleh reviewer. Semua penulis telah menandatangani hak cipta penerbitan paper. Dilarang mereproduksi, mendownload, mencuplik, mempublikasikan, memindahkan, ke dalam bentuk lain dengan tujuan tertentu, kecuali dengan izin penulis dan menunjukkan kontribusinya ke pada penulis.

Pihak penerbit tidak menambah atau mengurangi isi yang ada pada buku ini dan tidak bertanggungjawab atas kesalahan yang ada pada buku ini.

Hak Cipta @Jurusan Teknik Elektro, Politeknik Negeri Jakarta 2014

SUSUNAN PANITIA SNTE 2014

SK No. 5299/PL3/SK/2014

Pengarah : Abdillah, SE., MSi.

Selaku Direktur Politeknik Negeri Jakarta

: Iwa Sudradjat, ST., MT.

Penanggung Jawab Selaku Ketua Jurusan Teknik Elektro

Politeknik Negeri Jakarta

Wakil Penanggung Jawab : Ismujianto, ST., MT.

Selaku Sekretaris I Jurusan Teknik Elektro

Ir. Anik Tiandra Setiati. MM.

Selaku Sekretaris II Jurusan Teknik Elektro

Ketua Pelaksana : Dra. B.S Rahayu Purwanti, MSi. Wakil Ketua Pelaksana : Mohamad Fathurahman, ST., MT..

Sekretaris(Koordinator) : Asri Wulandari, ST.,MT. Kesekretariatan : Drs. Jamser Simanjuntak

Drs. Latief Mawardi, ST., M.Kom.

Mardanih Illa Nurabika

Bendahara 1 : Ir. Sri Danaryani, MT.

Bendahara 2 : Yenniwarti Rafsyam, SST., MT.
Acara (Koordinator) : Ikhsan Kamil, ST., M.Kom.
Anggota : Hamid Tharhan, ST., M.Kom

Editor Makalah (Koordinator) : Dr. Drs. A. Tossin Alamsyah, ST., MT.

Anggota : Nanang Rohadi, ST., MT., Ph.D.

Isdawimah, ST., MT. Toto Supriyanto, ST., MT.

Ir. Sutanto, MT.

Agus Wagyana, ST., MT. Riandini, ST., M.Sc.

Sponsor/Donasi(Koordinator) : Rika Novita Wardhani, ST., MT.

Anggota : A.DamarAji, ST., M.Kom.

Dra. Ardina Askum

Dra. Yogi Widiawati, M.Hum.

Reisal Abdallah

Perlengkapan dan Transportasi(Koordinator) : Drs. Indra Z., S.ST., M.Kom.

Anggota : Darwin, ST., M.Kom.

Silo Wardono, ST., MT.

Edy Ubaidillah

Publikasi dan Web(Koordinator) : Benny Nixon, ST., MT.

Anggota : Agus Setiawan

Dokumentasi : Dandun Widhiantoro, ST., MT.

Konsumsi(Koordinator) : Dra. Wartiyati, M.Si. Anggota : Sri Lestari, ST., MT.

Drs. Djoko Santoso TSB

Naning Triwati

Tenaga Pendukung : Eka Firdaus

: Age Eriyanto Endang Ruyatna

Reviewer:

- 1. Dr. A. Tossin Alamsyah, ST., MT.(Politeknik Negeri Jakarta)
- 2. Nanang Rohadi, ST., MT., Ph.D. (Politeknik Negeri Jakarta)
- 3. Dr. Peni Handayani, ST., MT. (Politeknik Negeri Bandung)
- 4. Haryadi, Ph.D. (Politeknik Negeri Bandung)
- 5. Dr. Ir. R. Edy Purwanto, M.Sc. (Politeknik Negeri Malang)
- 6. Dr. Dpl. Ing. Ahmad Taqwa, MT. (Politeknik Negeri Sriwijaya)

Keynote Speaker:

- 1. Prof. Dr(HC) Dahlan Iskan, Penggagas Mobil Listrik
- 2. Prof. Dr.Ing. Ir. H. Didik Notosudjono, M.Sc.(Asisten Deputi Kekayaan Intelektual dan Standarisasi Deputi Sumber Daya Iptek Kementerian Riset, Teknologi Dan Pendidikan Tinggi)
- 3. Ir. Dicky Edwin Hindarto (Sekretariat JCM Indonesia dan anggota Dewan Pakar Masyarakat Energi Terbarukan Indonesia dan Ketua Dewan Penasehat untuk Yayasan Mitra Hijau,)

KATA PENGANTAR BUKU PROSIDING

Puji Syukur kami panjatkan kepada Tuhan Yang Maha Esa, karena berkat karunia dan rahmat-Nya seluruh rangkaian kegiatan SNTE telah terselesaikan. Sejak dari persiapan pada bulan September hingga pelaksanaannya bulan Desember. Seluruh rangkaian kegiatan yang tergabung dalam SNtE 2014 terlaksana dengan cukup baik. Terlaksananya rangkaian kegiatan tidak terlepas dari kerja keras panitia, baik secara personal atau kelompok/tim pada masing-masing seksi kepanitiaan. Keberhasilan dalam kepanitiaan masih perlu ditingkatkan dan kekurangan sangat bermanfaat sebagai sumber pembelajaran kegiatan sebelumnya. Selamat dan sukses Panitia SNTE 2014. Kegiatan akhir dari kepanitiaan SNTE 2014 adalah penyusunan seluruh artikel yang telah diseminarkan menjadi Buku Prosiding. Proses penyusunannya mengalami kendala pada pengkoleksian artikel, sehingga mengalami beberapa kali penangguhan. Dari total 45 abstrak dalam Buku prosiding, 1 pemakalah tidak mengirimkan full papernya. Sehingga total artikel pada Buku Prosiding adalah 44 (empat puluh empat).

Atas nama Panitia SNTE kami mengucapkan terima kasih kepada:

- (1). Para Keynote Speaker, yang telah menyampaikan materi sesuai dengan tema SNTE 2014
- (2). Para Reviewer dari Polsri Palembang, Polban Bandung, Polinema, dan PNJ
- (3). Para Pemakalah SNTE 2014
- (4). Direktur Politeknik Negeri Jakarta beserta para stafnya
- (5). Ketua Jurusan Teknik Elektro beserta para stafnya
- (6). Mahasiswa dan Menwa yang telah berpartisipasi

Setiap kegiatan kami dalam melaksanakan tugas kepanitiaan, baik selama persiapan, pelaksanaan dan pelaporan terkait dengan berbagai pihak. Bila keterkaitan terebut dijumpai kekurangan dan kesalahan baik secara lisan, tulisan, dan tindakan mohon maaf. Sebab pintu maaf dari Bapak/Ibu semua akan membawa kebaikan dan perbaikan pada kami. Pelengkap perbaikan dan demi peningkatan penyelenggaraan SNTE 2015 kami atas nama Jurusan Teknik Elektro menerima saran kritik dari Bapak/Ibu para undangan dan pemakalah.

Akhir kata, dengan berniat baik semoga kita bertemu lagi pada kegiatan SNTE 2015 dan dapat meraih sukses dari tahun-tahun sebelumnya. Mari membangun semangat dan percaya diri agar bermanfaat bagi diri sendiri dan lingkungan sekitar, serta bagi Nusa dan Bangsa Indonesia.

Teriring salam SNTE 2014 Panitia

SAMBUTAN KETUA PELAKSANA SEMINAR NASIONAL TEKNIK ELEKTRO 2014

Rasa syukur kita panjatkan pada Tuhan Yang Maha Esa karena rahmat-Nya yang berlimpah telah memberkahi pelaksanaan Seminar Nasional Teknik Elektro (SNTE) 2014. **Pertama;** kami sampaikan terima kasih kepada para narasumberyaitu, Direktur PNJ, para Pembantu Direktur, para Ketua Jurusan, para praktisi/peneliti/ pemakalah, para undangan, serta para peserta yang telah meluangkan waktunya untuk hadir. **Kedua,** permohonan maaf dari kami Panitia SNTE 2014, dalam keterbatasan yang kami miliki sehingga masih ada kekurangan disana-sini. **Ketiga,** beberapa hal yang perlu kami sampaikan atas nama Panitia SNTE 2014 adalah:

- SNTE adalah agenda rutin satu tahunan sebagai perwujudkan kewajiban para Dosen di Perguruan Tinggi. Seiring dengan kewajiban tersebut para pakar/praktisi/ peneliti/mahasiswa memerlukan wahana pertemuan ilmiah. Hasil penelitian/temuan para pakar/praktisi/peneliti/mahasiswa dipublikasikan dalam seminar agar dikenali perkembangan keilmuannya secara nasional/international.
- Adapun Tema SNTE 2014 adalah Peningkatan Kualitas Sumber Daya Manusia Melalui Penelitian Teknologi Tepat Guna yang Berwawasan Lingkungan. Perkembangan pengetahuan dan teknologi tepat guna mengarah pada konsep wawasan lingkungan. Industri kecil/besar berlomba-lomba menggunakan teknologi ramah lingkungan dalam proses produksinya. Oleh karena itu dibutuhkan riset aplikasi yang dapat memberikan added value bagi industri. Nilai tambah dimaksud harus didukung sinergi yang baik antara peneliti dan praktisi (industri) untuk dapat menghasilkan teknologi tepat guna yang berwawasan lingkungan. Sinergi diantara keduanya dapat meningkatkan peran serta dalam pemupukan sikap ilmiah dan profesionalisme di kalangan sivitas akademika. Pengembangan dan aplikasi teknologi melalui penelitian dan penulisan karya ilmiah mengarah pada moto ramah lingkungan.
- Tujuan SNTE adalah ⁽¹⁾Menumbuhkan sikap inovatif, kreatif serta tanggap terhadap perkembangan IPTEK, ⁽²⁾Menjadi forum komunikasi hasil riset antar para Pakar Peneliti, Praktisi, Industri, Akademisi, dan Mahasiswa, ⁽³⁾Menjadi wadah presentasi ilmiah, sehingga menumbuhkan ide dan pengembangan program penelitian lanjut.
- Sasaran SNTE adalah terbukanya perkembangan dan informasi hasil penelitian mutakhir sebagai sarana mengupdate diri. Hasil penelitian seseorang menjadi sumber informasi bagi orang lain/diri sendiri agar pemikiran/ide
 penelitian lanjutan. Informasi mutakhir dari publikasi ilmiah melalui SNTE 2014 menjadi ide/sumber pemikiran
 penelitian lanjutan. Inspirasi yang bersumber dari ide tersebut dapat dikembangkan sesuai dengan kebutuhan dan
 teknologi yang diperlukan industri/masyarakat. Sesuai tema dalam Seminar Nasional Teknik Elektro 2014 maka
 Panitia telah mengundang tiga Keynote Speaker yaitu: Prof. Dr (HC) Dahlan Iskan (Penggagas Pemakaian Listrik
 sebagai energi alternatif); Prof. Dr. Ing. Ir. H. Didik Notosudjono, M.Sc, (Pakar Konversi Energi, BPPT) dan Ir.
 Dicky Edwin Hindarto, (Dewan Nasional Perubahan Iklim).Sedangkan jaminan atas kualitas artikel, Panitia telah
 bekerjasama dengan enam reviewer dari beberapa Politeknik yaitu: Dr. A. Tossin Alamsyah, S.T, MT (PNJ);
 Nanang Rohadi, S.T, MT, Ph.D (PNJ); Dr. Penni Handayani (POLBAN), Dr. Haryadi, M.Sc (POLBAN), Dr. Ir. R.
 Edy Purwanto M.Sc (POLINEMA); Dr. Dpl. Ing. Ahmad Taqwa. M.T (POLSRI).Total pemakalah dalam SNTE
 2014 adalah 43, yang terdiri dari 12 pemakalah dari PNJ dan 31 pemakalah berasal dari Politeknik/Perguruan
 Tinggi dan Lembaga Penelitian.
- Kesuksesan SNTE 2014 juga didukung dari berbagai pihak yang telah berkontribusi aktif baik sejak dari persiapan, pelaksanaan hingga pelaporannya. Kepanitiaan terdiri dari para Dosen, Staf Administrasi dan mahasiswa, menunjukkan bahwa SNTE 2014 melibatkan seluruh civitas akademika di tingkat Jurusan dan Direktorat serta tentu saja pihak sponsor yang juga telah mendukung acara ini yakni PT. Indosat Tbk. dan PT. Telkomsel Tbk.

Harapan kami, semoga SNTE dapat terus dilaksanakan secara berkesinambungan, dengan jumlah pemakalah/pesertanya yang meningkat serta mempertajam kualitas artikelnya. Akhir kata, setelah silaturahmi kita dalam SNTE 2014 Bapak/Ibu/Saudara/i membawa kesan baik dan menyebarkannya sehingga dapat bertemu kembali pada SNTE 2015. Terima kasih.

Depok, 8 Desember 2014 Ketua Pelaksana SNTE-2014

<u>Dra. B. S. Rahayu Purwanti, MSi.</u> NIP.19610416 199003 2 002

SAMBUTAN KETUA JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI JAKARTA

Assalamu'alaikum Wr. Wb.

Puji dan syukur kami panjatkan kehadirat Allah SWT, atas rahmat dan karunia-Nya, kita dapat melaksanakan kegiatan Seminar Nasional Jurusan Teknik Elektro (SNTE) Tahun 2014 di Politeknik Negeri Jakarta.

Seminar Nasional dengan tema "Peningkatan Kualitas Sumber Daya Manusia Melalui Penelitian Teknologi Tepat Guna dan Berwawasan Lingkungan" diselenggarakan sebagai bagian dari Tri Dharma Perguruan Tinggi Jurusan Teknik Elektro Politeknik Negeri Jakarta. Tema tersebut memiliki makna yang sangat tepat khususnya untuk pendidikan tinggi seperti Politeknik. Mengingat, Politeknik merupakan pendidikan tinggi yang menyiapkan mahasiswanya menjadi profesional dengan keterampilan/kemampuan kerja tinggi. Hasil-hasil penelitian ini selain akan memperkaya khasanah IPTEKS, diharapkan dapat dijadikan bahan pembelajaran. Melalui pembelajaran tersebut, pada akhirnya akan dihasilkan sumber daya manusia yang memiliki kemampuan menerapkan teknologi tepat guna dan peduli terhadap lingkungan.

Seminar ini dapat diselenggarakan berkat kerjasama panitia seminar, para pemakalah, dan pihak lain yang telah berkontribusi. Oleh karena itu kami menyampaikan penghargaan dan ucapan terima kasih, semoga seminar ini dapat bermanfaat untuk kemajuan IPTEKS.

Wassalamualaikum wr.wb.

Depok, 8 Desember 2014 Ketua Jurusan Teknik Elektro,

<u>Iwa Sudradjat, ST., MT</u> NIP. 196106071986011002

SAMBUTAN DIREKTUR POLITEKNIK NEGERI JAKARTA

Puji syukur kita panjatkan kehadirat Allah SWT atas berkat rahmat dankarunia-Nya, sehingga kita dapat berkumpul hari ini dalam keadaan sehatwal'afiat untuk menjalankan aktifitas masing-masing.Hari ini kita berkumpul, bersilaturahmi dalam suasana keramahtamahan dengankegiatan khusus dan istimewa.

Seperti kita ketahui bahwa, salah satu kewajiban kita dan sesuai denganTri Dharma Perguruan Tinggi adalah melaksanakan penelitian.Agarsupaya hasil penelitian dapat dikenal dan diketahui perkembangannyaoleh para peneliti secara nasional, maka diselenggarakanlah saranapublikasi. Politeknik Negeri Jakarta, khususnya Jurusan Teknik Elektromemfasilitasi sarana publikasi ilmiah dengan mengadakan seminarnasional.

Saya mengucapkan selamat dan menyambut baik atas terselenggaranyaSeminar Nasional Teknik Elektro (SNTE) 2014 sebagai wadah pertukaraninformasi dan berkumpulnya Bapak/Ibu/Saudara/i. Pertukaran informasisesuai bidang ilmu masing-masing akan makin memperkaya wawasankeilmuan para Dosen/ Peneliti/Praktisi/Guru/ Mahasiswa.

Semoga dengan terselenggarakannya SNTE 2014, Bapak/Ibu/Saudara/I dapat menikmati dan memetik buah karya para pakar/peneliti untukmeningkatkan wawasan keilmuannya.

Ucapan terima kasih dan penghargaan setinggi-tingginya kami sampaikankepada Bapak/Ibu/Saudara/i yang telah berpartisipasi dalam SNTE.Sekecil apapun partisipasi Bapak/Ibu/Saudara/i, baik sebagai keynotespeaker/reviewer/ pemakalah/peserta/panitia atau undangan lainnya telah memiliki andil sangat besar dalam mensukseskan SNTE 2014.Rutinitas penyelenggaraan SNTE sekali dalam setahun perlu dipertahankan dan ditingkatkan kualitasnya. Peningkatan dimaksudkanagar dapat menunjang visi misi PNJ dan merealisasikan program kegiatanjangka pendek/menengah/ panjang.Target/capaian kemajuan adalah sisikonten kualitas artikel sesuai dengan kemutakhiran hasil penelitian tingkatinternasional. Konten sebuah artikel menjadi tolok ukur kualitas hasilpeneltian, sehingga pembahasan/analisis suatu penelitian menjadicelah/peluang peneliti lain.

Akhir kata jika dalam penyelenggaraan SNTE 2014 masih ditemukankekurangan ataupun kesalahan, diharapkan kritik/saran membangun dari Bapak/Ibu/Saudara/i. Kesuksesan SNTE menjadi bagian dari keberhasilanBapak/Ibu/ Saudara/i, sesuai dengan kepiawaian masing-masing. Sayaberharap dengan berbekal saran/kritik dari Bapak/Ibu/Saudara/i, sehinggapenyelenggaraan SNTE tahun depan akan semakin sukses danberkualitas.

Depok, 8 Desember 2014 PoliteknikNegeri Jakarta Direktur,

Abdillah, S.E., M.Si. NIP 195903091989101001

JADWAL ACARA SEMINAR NASIONAL TEKNIK ELEKTRO (SNTE) TAHUN 2014

Waktu	Kegiatan	Penanggung jawab
06.30 – 07.00 WIB	Registrasi Peserta	Penerima tamu
	Pembukaan	Acara
	Menyanyikan Lagu Kebangsaan	Acara
	Indonesia Raya	
	Laporan Ketua Panitia	Ketua Panitia SNTE 2014
07.00 – 07.30 WIB	Sambutan Ketua Jurusan Teknik	Ketua Jurusan
07.00 07.30 WIB	Elektro	Teknik Elektro PNJ
		Iwa Sudradjat, ST., MT.
	Sambutan Direktur Politeknik Negeri	Direktur
	Jakarta Sekaligus Membuka Seminar	Politeknik Negeri Jakarta
	Nasional Teknik Elektro 2014	Abdillah, SE., MSi.
	Pembicara Utama I :	Moderator:
	Prof. Dr.(HC) Dahlan Iskan	Rika Novita, ST., MT.
07.30 – 08.30 WIB	Penggagas Penggunaan Energi	
	Alternatif	
	Mantan Menteri Negara BUMN	
08.30 – 09.00 WIB	Coffee Break	Sie Konsumsi
	Pembicara UtamaII :	Moderator:
	Prof. Dr.Ing. Ir. H. Didik	Dra. BS. Rahayu
00.00 10.00 WID	Notosudjono, M.Sc.	Purwanti, M.Si.
09.00 – 10.00 WIB	Asisten Deputi Kekayaan Intelektual	
	dan Standarisasi Iptek Kementerian	
	Riset, Teknologi dan Pendidikan	
	Tinggi Pembicara Utama III :	Madaustan
	_	Moderator:
	Ir. Dicky Edwin Hindarto Sekretariat JCM Indonesia dan	Nanang Rohadi, ST., MT., Ph.D.
10.15 – 11.15 WIB	anggota Dewan Pakar Masyarakat	rii.D.
10.13 – 11.13 WID	Energi Terbarukan Indonesia dan	
	Ketua Dewan Penasehat untuk	
	Yayasan Mitra Hijau	
11.30 – 12.30 WIB	Presentasi Sesi 1 Paralel	Moderator
12.30 – 13.30 WIB	Ishoma	Sie Konsumsi
13.30 – 15.00 WIB	Presentasi Sesi 2 Paralel	Moderator
15.00 – 15.30 WIB	Coffee Break	Sie Konsumsi
15.30 – 16.45 WIB	Lanjutan Presentasi Sesi 2 Paralel	Moderator

Sesi Paralel

Ruang Seminar I (Ruang Rapat A Gedung Q Lantai II)

Bidang Kelistrikan (A)

idang Kelistrikan (A) Waktu	Pembicara	Judul Makalah	Moderator
vv aktu	1 CHIDICAL A	Dynamic Optimal Power	Miduelatui
11.30 – 11.45 WIB	Aprilely Ajeng Fitriana, Ontoseno Penangsang, dan Adi Soeprijanto	Flow Pada Stand-Alone Microgrid Dengan Mempertimbangkan Karakteristik Umur Baterai	
11.45 – 12.00 WIB	Fauzan Arrofiqi dan Achmad Arifin	Portable Electrical Stimulator Berbasis ARM Microcontroller untuk Restorasi Gerakan Menggunakan FES System	Isdawimah, ST., MT
12.15 – 12.30 WIB	Ni Made Erma Pratiwi Astiti dan Ni Made Ary Esta Dewi Wirastuti	Penggunaan Sumber Energi Terbarukan pada Jaringan Telekomunikasi Seluler	
12.30 – 13.30 WIB		Ishoma	
13.30 – 13.45 WIB	Sudirman Palaloi	Perhitungan Losses Teknis Jaringan Tegangan Menengah 20 Kv Sistem Kelistrikan Kota Pontianak	
13.45 – 14.00 WIB	Shinta Puspitasari	Pertajaman Kualitas Citra Meteran Listrik dengan Transformasi Ruang Warna	
14.00 – 14.15 WIB	Ribka Stephani, Yuli Prasetyo, Ontoseno Penangsangdan Rony Seto Wibowo	Implementasi Transformator Dengan Koneksi D-Y Pada Analisa Aliran Daya Harmonisa Di Sistem Distribusi Radial Tiga Fasa Untuk Mereduksi Harmonisa	
14.15 – 14.30 WIB	Riski Cahya Anugrerah Haebibi, Adi Soeprijantodan Ardyono Priyadi	Strategi Meminimalkan Load Shedding Menggunakan Metode Sensitivitas untuk mencegah voltage collapse pada Sistem Kelistrikan Jawa Bali 500 kV	Isdawimah, ST., MT
14.30 – 14.45 WIB	Vindriani Esra, Dedie Tooy, Freeke Pangkerego dan Ireine A Longdong	Analisis Perbedaan Kadar Air dan Ukuran Sabut Kelapa Terhadap Energi Listrik yang dihasilkan pada Gasifikasi Dwon Draft	
14.45 – 15.00 WIB	Rian Sondakh, Dedie Tooy, Freeke Pangkerego, Frans	Perbandingan Efisiensi Gasifikasi Sabut Dan Kayu Bakar Terhadap Energi	

Waktu	Pembicara	Judul Makalah	Moderator
	Wenur	Listrik Yang Dihasilkan	
		Dengan Menggunakan	
		Downdraft Gasifier	
		Perbandingan Efisiensi	
	Rian Sondakh, Dedie	Gasifikasi Sabut Dan Kayu	
15.00 – 15.15 WIB	Tooy, Freeke	Bakar Terhadap Energi	
13.00 – 13.13 WIB	Pangkerego, Frans	Listrik Yang Dihasilkan	
	Wenur	Dengan Menggunakan	
		Downdraft Gasifier	
15.15 – 15.45 WIB		Coffee Break	
	Kartika, Roswaldi Sk,	Monitoring Arus	
15.45 – 16.00 WIB	Firmansyah	Menggunakan Sensor Non-	
	Firmansyan	Invasive Current	
		Meningkatkan Efektifitas	
		Switching Tegangan	
16.00 – 16.15 WIB	Ahmad Fauzi Basri	Medium untuk Suplai Power	
		PT Holcim Narogong Plant	
		dengan Simulator	
		Pengaruh Penambahan	
		Natrium Khlorida terhadap	
	Sutantadan Danana	Perubahan Arus Listrik dan	Isdawimah, ST.,
16.15 – 16.30 WIB	Sutantodan Danang Widjajanto	Penurunan Kandungan	MT
	wiujajanto	Polutan Tembaga pada	
		Proses Elektrokoagulasi Air	
		Limbah Industri	
	Murie Dwiyanitidan	Model Sistem Scada	
16.30 – 16.45 WIB	Kendi Moro	Network Pada Sistem	
	Nitisasmita	Kontrol Pemanas Air	
		Analisa Sensitivitas untuk	
16.45 – 17.00 WIB	Nanang Rohadi	Algoritma Pengukuran	
10. 1 3 – 17.00 WID	Tranang Konaui	Impedansi pada Proteksi	
		Saluran Transmisi	

Ruang Seminar II (Ruang Teleconference Gedung Q Lantai 3) Bidang Elektronika Industri (B)

Waktu	Pembicara	Judul Makalah	Moderator
11.30 – 11.45 WIB	Muhamad Muflih dan Andre Yulian Atmojo	Desain Konseptual Sistem Akuisisi Data Pengujian Kinerja Daya Turbin Angin Kapasitas Rendah Menggunakan Fasilitas Terowongan Angin	Dr. A. Tossin Alamsyah, ST., MT.
11.45 – 12.00 WIB	Muhammad Niswar, Aksan S. Wijaya, Muhammad Ridwan, Adnan, Amil A. Ilham	Perancangan Perangkat Medis Pemantau Tanda Vital Pasien Gawat	1011.

Waktu	Pembicara	Judul Makalah	Moderator
	dan Zaenab Muslimin	Darurat.	
12.15 – 12.30 WIB	Delviyanti, Kartika	Pengaturan Kecepatan	
	dan Sandra	Konveyor untuk Sistem	
		Sortasi Buah Manggis	
		Berbasis ATMEGA8535	
		Aplikasi <i>Particle Swarm</i>	
		Optimization (PSO) untuk	
12.30 – 12.45 WIB	Son Haji	Optimasi Parameter	
		Kontroler Pid pada Sistem	
		Kendali Iklim Greenhouse	
12.45 – 13.30 WIB		Ishoma	Т
		Sintesis Timah Oksida	
		(SNO ₂) Nano Partikel	
13.30 – 13.45 WIB	Slamet Widodo	Dengan Doping In/Pd Menggunakan Metode Sol	
		Gel untuk Mendeteksi Gas	
		Carbon Monoksida (CO)	
		Smart Home Berbasis	
	Coiru Santoso, Dony	Mikrokontroller dan	
13.45 – 14.00 WIB	Rangga Putra dan Tri	Android	
	Prasetyo		
		Kerapatan Berbasis Outliers	
14.00 – 14.15 WIB	Adhi Mahendra	Deteksi Hidrogen Alir Time	Dr. A. Tossin
14.00 – 14.13 WID	Aum Manendra	Data Series pada Proses	Alamsyah, ST.,
		Sintering	MT.
		Pengembangan E Learning	1411.
14.15 – 14.30 WIB	Latief Mawardi	Di Jurusan Teknik Elektro	
		PNJ	
		Pemrogramman Sudut	
14.30 – 14.45 WIB	Darwin	Kemiringan pada Banding Sebagai Alat Penekuk Plat	
		Alumunium Berbasisi PLC	
		Kepuasan Mahasiswa	
	A 11 TD: 1 G .: .:	terhadap Layanan	
14.45 – 15.00 WIB	Anik Tjandra Setiati	Administrasi di Jurusan	
	dan Ardina Askum	Teknik Elektro Politeknik	
		Negeri Jakarta	
15.00 – 15.30 WIB		Coffee Break	
		Analisis Pendidikan	
15.30 – 15.45 WIB	Wartiyati	Karakter pada Organisasi	
		Kemahasiswaan	D'I M
	DC Dalaara Dara di	Pengidentifikasi Nomor	Rika Novita,
15.30 – 15.45 WIB	BS Rahayu Purwanti	Unik RFID Sistem Buka-	ST., MT.
	dan Reza Virgiawan	Tutup Palang Menyesuaikan Database Sistem Perparkiran	
15.45 _ 16.00 W/IR	Dwi Maulina Putri	Prototype Pengendali Sistem	
15.45 – 16.00 WIB	DWI Maulilia Putfi	Froiotype religendan Sistem	

Waktu	Pembicara	Judul Makalah	Moderator
	dan Dandun	Penerangan Ruangan	
	Widhiantoro	Dengan "Clap Recognizing"	
		Berbasis Bluetooth	
		(Receiver)	
		Penggunaan WI-FI Dalam	
16.15 – 16.30 WIB	Tara Swetlana dan	<i>Prototype</i> Notifikasi Pintu	
10.13 – 10.30 WIB	Dandun Widhiantoro	Bagi Penyandang Tuna	
		Rungu	
		Sistem Informasi Pencatatan	
16.30 – 16.45 WIB	Mauldy Lava	Transaksi Peminjaman Alat	
10.30 – 10.43 WID	Mauldy Laya	Laboratorium Berbasis Web	
		Frame Work	
		The Usage of Multimedia	
		Technology for Learning	
16.45 – 17.00 WIB	Yogi Widiawati	Technical English for	
		Indonesia Polytechnic	
		Students	

Ruang Seminar III (Ruang Aula Gedung Q Lantai 3) Bidang Teknik Telekomunikasi

Waktu	Pembicara	Judul Makalah	Moderator
11.30 – 11.45 WIB	Asep Yudi Hercuadi, Winiasti Putri Pratami dan Enceng Sulaeman	Perancangan dan Realisasi Mikrostrip Triplexer Menggunakan Metoda Dual- Mode Open-Loop Resonator	
11.45 – 12.00 WIB	Mochammad Haldi Widianto, Nasrullah Armidan Arief Suryadi	Evaluasi Kinerja Throughput pada Sistem Wimax	Toto Supriyanto,
12.00 – 12.15 WIB	Heru Susanto, Risanuri Hidayat dan Litasari	Pengenalan Kata pada Pembicaraan Menggunakan Wavelet	ST., MT.
12.15 – 12.30 WIB	Dadin Mahmudin, Topik Teguh Estu, dan Yusuf Nur Wijayanto	Analisa Pemandu Gelombang Optik Berstruktur Planar Menggunakan Program Analisa Elektromagnetik	
12.30 – 13.30 WIB		Ishoma	
13.30 – 13.45 WIB	I Gede Wahyu Surya Dharma	Implementasi Pengenalan Wajah Secara <i>Realtime</i> Menggunakan Metode Pengenalan <i>Hue</i> Saturation Value Eigenface	Toto Supriyanto, ST., MT.
13.45 – 14.00 WIB	Angga Wijaya,	Evaluasi Kinerja	

Waktu	Pembicara	Judul Makalah	Moderator
	Nasrullah Armidan Arief Suryadi	Throughput dan Daya Terima pada Sistem Wireless LAN	
14.00 – 14.15 WIB	Budi Darmawandan Fitri Astutik	Perancangan dan Pembuatan Alat Pengontrol Suhu Pasteurisasi Media Tanam Jamur Tiram Berbasis Mikrokontroller ATMEGA16	
14.15 – 14.30 WIB	Titik Mildawati	Metode <i>Analytical Hierarcy Process</i> (Ahp) UntukPenilaian Kinerja Dosen	
14.30 – 14.45 WIB	Pamungkas Daud , Eko Joni, Arif Nurrahman, Octa Herianadan Dadin Mahmudin	Sistem Pengawasan Wilayah Perbatasan Menggunakan Kamera CCTV-IP dan GPS	
14.45 – 15.00 WIB	Gregorius Hendita Artha K	Implementasi Security Sistem Firewall Open Source menggunakan CentOS dan ClearOS	
15.00 – 15.15 WIB	Gregorius Hendita Artha K	Application Delivery Order Soto with Shortest Route based on Android	
15.15 – 15.30 WIB	Fitriyanidan Ariya Suryaman	Analisis Performansi Graphics Processing UnitNVIDIA GEFORCE GTX 770 DAN AMD RADEON R9 280X Berdasarkan Hasil Benchmark	
15.30 – 16.00 WIB		Coffee Break	
16.00 – 16.15 WIB	Wisnu Broto	Pendeteksi Wajah Menggunakan <i>Gabor Filter</i> dan <i>Support Vector Machine</i>	Toto Supriyanto,
16.15 – 16.30 WIB	Danang Widjajanto	Analisis Kebutuhan Sistem Sistem Monitoring Akademk Mahasiswa	ST., MT.
16.30 – 16.45 WIB	Toto Supriyanto,Indra Zdan Teguh Firmansyah	Perancangan High Efficiency Dual-Layer Microstrip Coupler Untuk Aplikasi LTE Pada Frekuensi 2,3 GHz	Ir. Danang Widjajanto, MT.

DAFTAR ISI

Halaman Judul	i
Halaman Hak Cipta	ii
Susunan Panitia	iii
Kata Pengantar Buku Prosiding SNTE 2014	v
Sambutan Ketua Pelaksana SNTE 2014	vi
Sambutan Ketua Jurusan Teknik Elektro Politeknik Negeri Jakarta	vii
Sambutan Direktur Politeknik Negeri Jakarta	viii
Jadwal Acara Seminar	ix
Daftar Isi	XV

DAFTAR MAKALAH SNTE 2014

A. Bidang Kelistrikan

ID	Judul Makalah	Hal
A1-1	Dynamic Optimal Power Flow Pada Stand-Alone Microgrid Dengan Mempertimbangkan Karakteristik Umur Baterai Aprilely Ajeng Fitriana, Ontoseno Penangsang, dan Adi Soeprijanto	A1-A4
A1-2	Portable Electrical Stimulator Berbasis ARM Microcontroller untuk Restorasi Gerakan Menggunakan FES System Fauzan Arrofiqi dan Achmad Arifin	A5-A10
A1-3	Penggunaan Sumber Energi Terbarukan pada Jaringan Telekomunikasi Seluler Ni Made Erma Pratiwi Astiti dan Ni Made Ary Esta Dewi Wirastuti	A11-A15
A1-4	Perhitungan Losses Teknis Jaringan Tegangan Menengah 20 Kv Sistem Kelistrikan Kota Pontianak Sudirman Palaloi	A16-A21
A1-10	Monitoring Arus Menggunakan Sensor Non-Invasive Current Kartika, Roswaldi Sk, Firmansyah	A22-A28
A2-5	Pertajaman Kualitas Citra Meteran Listrik dengan Transformasi Ruang Warna Shinta Puspitasari	A29-A32
A2-7	Implementasi Transformator Dengan Koneksi D-Y Pada Analisa Aliran Daya Harmonisa Di Sistem Distribusi Radial Tiga Fasa Untuk Mereduksi Harmonisa Ribka Stephani, Yuli Prasetyo, Ontoseno Penangsangdan Rony Seto Wibowo	A33-A38

ID	Judul Makalah	Hal
A3-9	Pengaruh Penambahan Natrium Khlorida terhadap Perubahan Arus Listrik dan Penurunan Kandungan Polutan Tembaga pada Proses Elektrokoagulasi Air Limbah Industri Sutantodan Danang Widjajanto	A39-A44
A4-11	Model Sistem Scada Network Pada Sistem Kontrol Pemanas Air Murie Dwiyanitidan Kendi Moro Nitisasmita	A45-A50
A1-13	Strategi Meminimalkan Load Shedding Menggunakan Metode Sensitivitas untuk mencegah voltage collapse pada Sistem Kelistrikan Jawa Bali 500 kV Riski Cahya Anugrerah Haebibi, Adi Soeprijantodan Ardyono Priyadi	A51-A56
A5-14	Analisis Perbedaan Kadar Air dan Ukuran Sabut Kelapa Terhadap Energi Listrik yang dihasilkan pada <i>Gasifikasi Dwon Draft</i> Vindriani Esra, Dedie Tooy, Freeke Pangkerego dan Ireine A Longdong	A57-A62
A5-15	Perbandingan Efisiensi Gasifikasi Sabut Dan Kayu Bakar Terhadap Energi Listrik Yang Dihasilkan Dengan Menggunakan Downdraft Gasifier Rian Sondakh, Dedie Tooy, Freeke Pangkerego, Frans Wenur	A63-A67
A5-16	Meningkatkan Efektifitas <i>Switching</i> Tegangan Medium untuk Suplai Power PT Holcim Narogong Plant dengan Simulator Ahmad Fauzi Basri	A68-A72
A5-17	Analisa Sensitivitas untuk Algoritma Pengukuran Impedansi pada Proteksi Saluran Transmisi Nanang Rohadi	A73-A78

B. Bidang Elektronika Industri

ID	Judul Makalah	Hal
B1-1	Aplikasi <i>Particle Swarm Optimization (PSO</i>) untuk Optimasi Parameter Kontroler Pid pada Sistem Kendali Iklim <i>Greenhouse</i> Son Haji	B1-B4
B2-4	Desain Konseptual Sistem Akuisisi Data Pengujian Kinerja Daya Turbin Angin Kapasitas Rendah Menggunakan Fasilitas Terowongan Angin Muhamad Muflih dan Andre Yulian Atmojo	B5-B10
B2-5	Perancangan Perangkat Medis Pemantau Tanda Vital Pasien Gawat Darurat	B11-B15

ID	Judul Makalah	Hal
	Muhammad Niswar, Aksan S. Wijaya, Muhammad Ridwan,	
	Adnan, Amil A. Ilham dan Zaenab Muslimin	
	Pengaturan Kecepatan Konveyor untuk Sistem Sortasi Buah	
B2-8	Manggis Berbasis ATMEGA8535	B16-B22
	Delviyanti, Kartika dan Sandra	
	Smart Home Berbasis Mikrokontroller dan Android	
В3-7	2000 110 110 110 2 410 000 11 11 11 01 01 10 10 10 10 10 10	B23-B25
	Coiru Santoso, Dony Rangga Putra dan Tri Prasetyo	
	Sintesis Timah Oksida (SNO ₂) Nano Partikel Dengan Doping	
D. 4. 0	In/Pd Menggunakan Metode Sol Gel untuk Mendeteksi Gas	D2 (D22
B4-8	Carbon Monoksida (CO)	B26-B32
	Slamet Widodo	
	Pemrogramman Sudut Kemiringan pada Banding Sebagai Alat	
B5-9	Penekuk Plat Alumunium Berbasisi PLC	B33-B40
	Darwin	
	Kerapatan Berbasis Outliers Deteksi Hidrogen Alir Time Data	
D.5.10	Series pada Proses Sintering	D41 D45
B5-10		B41-B45
	Adhi Mahendra	
D. 11	Pengembangan <i>E Learning</i> Di Jurusan Teknik Elektro PNJ	D 4 6 D 40
B5-11	Latief Mawardi	B46-B49
	Kepuasan Mahasiswa terhadap Layanan Administrasi di Jurusan	
B6-13	Teknik Elektro Politeknik Negeri Jakarta	D50 D52
B0-13		B50-B52
	Anik Tjandra Setiati dan Ardina Askum	
B6-14	Analisis Pendidikan Karakter pada Organisasi Kemahasiswaan	D52 D50
B0-14	Wartiyati	B53-B59
	Pengidentifikasi Nomor Unik RFID Sistem Buka-Tutup Palang	
B7-16	Menyesuaikan Database Sistem Perparkiran	B60-B65
B/-10		B00-B03
	BS Rahayu Purwanti dan Reza Virgiawan	

C. Bidang Teknik Telekomunikasi

ID	Judul Makalah	Hal
	Perancangan dan Realisasi Mikrostrip Triplexer Menggunakan	
	Metoda Dual-Mode Open-Loop Resonator	~. ~-
C1-2		C1-C7
	Asep Yudi Hercuadi, Winiasti Putri Pratami dan Enceng	
	Sulaeman	
C1-3	Evaluasi Kinerja Throughput pada Sistem Wimax	C8-C13

ID	Judul Makalah	Hal
	Mochammad Haldi Widianto, Nasrullah Armidan Arief Suryadi	
C1-6	Pengenalan Kata pada Pembicaraan Menggunakan Wavelet Heru Susanto, Risanuri Hidayatdan Litasari	C14-C21
C1-9	Analisa Pemandu Gelombang Optik Berstruktur Planar Menggunakan Program AnalisaElektromagnetik Dadin Mahmudin, Topik Teguh Estu, dan Yusuf Nur Wijayanto	C22-C25
C1-14	Prototype Pengendali Sistem Penerangan Ruangan Dengan "Clap Recognizing" Berbasis Bluetooth (Receiver) Dwi Maulina Putri dan Dandun Widhiantoro	C26-C28
C1-16	Penggunaan WI-FI Dalam <i>Prototype</i> Notifikasi Pintu Bagi Penyandang Tuna Rungu Tara Swetlana dan Dandun Widhiantoro	C29-C32
C2-4	Implementasi Pengenalan Wajah Secara Realtime Menggunakan Metode Pengenalan Hue Saturation Value Eigenface I Gede Wahyu Surya Dharma	C33-C36
C2-5	Evaluasi Kinerja Throughput dan Daya Terima pada Sistem Wireless LAN Angga Wijaya, Nasrullah Armidan Arief Suryadi	C37-C42
C2-7	Analisis Kebutuhan Sistem Sistem Monitoring Akademk Mahasiswa Danang Widjajanto	C43-C48
C2-8	Perancangan dan Pembuatan Alat Pengontrol Suhu Pasteurisasi Media Tanam Jamur Tiram Berbasis Mikrokontroller ATMEGA16 Budi Darmawandan Fitri Astutik	C49-C53
C3-9	Metode <i>Analytical Hierarcy Process</i> (Ahp) Untuk Penilaian Kinerja Dosen Titik Mildawati	C54-C60
C2-10	Sistem Pengawasan Wilayah Perbatasan Menggunakan Kamera CCTV-IP dan GPS Pamungkas Daud,Eko Joni,Arif Nurrahman,Octa Herianadan Dadin Mahmudin	C61-C64
C2-11	Implementasi Security Sistem Firewall Open Source menggunakan CentOS dan ClearOS	C65-C71

ID	Judul Makalah	Hal
	Gregorius Hendita Artha K.	
C2-12	Application Delivery Order Soto with Shortest Route based on Android Gregorius Hendita Artha K.	C72-C77
C2-15	Analisis Performansi <i>Graphics Processing Unit</i> NVIDIA GEFORCE GTX 770 DAN AMD RADEON R9 280X Berdasarkan Hasil <i>Benchmark</i> Fitriyani dan Ariya Suryaman	C78-C82
C3-17	Perancangan High <i>Efficiency Dual-Layer Microstrip Coupler</i> Untuk Aplikasi LTE Pada Frekuensi 2,3 GHz Toto Supriyanto,Indra Z dan Teguh Firmansyah	C83-C88
C5-19	Pendeteksi Wajah Menggunakan <i>Gabor Filter</i> dan <i>Support Vector Machine</i> Wisnu Broto	C89-C95
C5-20	Sistem Informasi Pencatatan Transaksi Peminjaman Alat Laboratorium Berbasis <i>Web Frame Work</i> Mauldy Laya	C96-C100