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02-Discrete-Time Signals and Systems 

Dr. Risanuri Hidayat 

 
BASIC DEFINITIONS 
 

2 

Signals may be classified into four categories depending 
on the characteristics of the time-variable and values 
they can take:  

•  continuous-time signals (analogue signals), 
•  discrete-time signals, 
•  continuous-valued signals, 
•  discrete-valued signals. 
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CONTINUOUS-TIME (ANALOGUE) 
SIGNALS 

3 

: 
 

Time:            defined for every value of time         ,  
Descriptions: functions of a continuous variable t:       , 
Notes:            they take on values in the continuous                      

  interval                                              .                             

( )f t

( ) ( , ) ,f t a b for a b∈ − →∞

t R∈

Note: ( )
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DISCRETE-TIME SIGNALS 

4 

: 
 

Time: defined only at discrete values of time:          , 
Descriptions: sequences of  real or complex 

 numbers                        ,  
Note A.: they take on values in the continuous 

 interval                                             , 
    Note B.: sampling of analogue signals: 

•  sampling interval, period:    ,    
•  sampling rate: number of samples per 

second, 
•  sampling frequency (Hz):                .                   

  

( ) ( )f nT f n=

T

1/Sf T=

( ) ( , ) ,f n a b for a b∈ − →∞

t nT=
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CONTINUOUS-VALUED SIGNALS 

5 

: 
 

Time: they are defined for every value of time or  
            only at discrete values of time,  
Value: they can take on all possible values on 

finite or infinite range, 
Descriptions: functions of a continuous variable 

or sequences of numbers.      

6 

Discrete-valued signals: 
 

Time: they are defined for every value of time or             
only at discrete values of time, 

Value: they can take on values from a finite set of 
possible values, 

Descriptions: functions of a continuous variable or 
sequences of numbers. 
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DIGITAL FILTER THEORY: 

7 

Digital signals: 
Definition and descriptions: discrete-time and 

discrete-valued signals (i.e. discrete -time 
signals taking on values from a finite set of 
possible values), 

Note:  sampling, quatizing and coding  process i.e. 
process of analogue-to-digital conversion. 

Discrete-time signals: 
Definition and descriptions: defined only at discrete 

values of time and they can take all possible 
values on finite or infinite range (sequences of 
real or complex numbers:         ), 

Note:  sampling process, constant sampling period. 
( )f n

DISCRETE-TIME SIGNAL 
REPRESENTATIONS 

8 

A. Functional representation: 
1 1,3
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x n for n

elsewhere

=⎧
⎪

= =⎨
⎪
⎩

0 0
( ) 0,6 0,1, ,102

1 102

n

for n
y n for n

n

<⎧
⎪

= =⎨
⎪ >⎩

K

B. Graphical 
representation 

( )x n

n
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DISCRETE-TIME SIGNAL 

•  In Matlab, a finite-duration sequence 
representation requires two vectors, and each 
for x and n. 
•  Example: 

•  Question: whether or not an arbitrary infinite-duration 
sequence can be represented in MATLAB? 

DISCRETE-TIME SIGNAL 
REPRESENTATIONS 

10 

D. Sequence representation: 

C. Tabular representation: 
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ELEMENTARY DISCRETE-TIME 
SIGNALS 

11 

A. Unit sample sequence (unit sample, unit impulse, 
unit impulse signal) 

 

( )nδ

n

FUNCTION [X,N]=IMPSEQ(N0,N1,N2) 

•  A: n=[n1:n2];  
•  x = zeros(1,n2-n1+1); x(n0-n1+1)=1; 

•  B: n=[n1:n2]; x = [(n-n0)==0]; stem(n,x,’ro’); 
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ELEMENTARY DISCRETE-TIME SIGNALS 

13 

B. Unit step signal (unit step, Heaviside step sequence) 

n

( )u n

UNIT STEP SEQUENCE 

{ } ,1,1,1,0,0,
0,0
0,1

)(
↑

=
⎩
⎨
⎧

<

≥
=

n
n

nu

A: n=[n1:n2]; x=zeros(1,n2-n2+1); x(n0-n1+1:end)=1; 

B: n=[n1:n2]; x=[(n-n0)>=0]; 
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3. REAL-VALUED EXPONENTIAL 
SEQUENCE 

For Example: 100,)9.0()( ≤≤= nnx n

n=[0:10]; x=(0.9).^n; stem(n,x,’ro’)  
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ELEMENTARY DISCRETE-TIME SIGNALS 

16 

C. Complex-valued exponential signal 

[ ] 2 .( ) , ( ) 1, arg ( ) 2 .j nT

S

f nx n e x n x n nT f nT
f

ω π
ω π= = = = =

where 

, , 1R n N j is imaginary unitω∈ ∈ = −

and 

T is sampling period and        is sampling frequency. Sf

(complex sinusoidal sequence, complex phasor) 

For Example: n=[0:10]; x=exp((2+3j)*n); 
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DISCRETE-TIME SYSTEMS 

17 

 A discrete-time system is a device or algorithm that 
operates on a discrete-time signal called the input or 
excitation (e.g. x(n)), according to some rule (e.g. H[.]) 
to produce another discrete-time signal called the output 
or response (e.g. y(n)). 

This expression denotes also the transformation H[.]        
(also called operator or mapping) or processing 
performed by the system on x(n) to produce y(n).  

DISCRETE-TIME SYSTEMS 

18 

[ ].H

discrete-time 
system 

Input-Output Model of Discrete-Time System 

(input-output relationship description) 
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CLASSIFICATION.  
STATIC VS. DYNAMIC SYSTEMS 

19 

A discrete-time system is called static or memoryless if its output 
at any time instant n depends on the input sample at the same time, 
but not on the past or future samples of the input. In the other case, 
the system is said to be dynamic or to have memory.  

If the output of a system at time n is completly determined by the 
input samples in the interval from n-N to n (            ), the system is 
said to have memory of duration N. 

If             , the system is static or memoryless.  

If                    , the system is said to have finite memory. 

If                , the system is said to have infinite memory. 

0N ≥

0N =

0 N< <∞

N →∞

20 

Examples: 
The static (memoryless) systems:  

  

 

The dynamic systems with finite memory: 

  

  

  

The dynamic system with infinite memory: 

  

 

3( ) ( ) ( )y n nx n bx n= +
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( ) ( ) ( )
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=
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TIME-INVARIANT VS. TIME-VARIABLE  

21 

. 

.  
A discrete-time system is called time-invariant if its input-output 
characteristics do not change with time. In the other case, the 
system is called time-variable.  

Definition. A relaxed system           is time- or shift-invariant if 
only if  

  

implies that  

  

for every input signal          and every time shift k . 

 

[.]H

( ) ( )Hx n y n⎯⎯→

( ) ( )Hx n k y n k− ⎯⎯→ −

( )x n

[ ]( ) ( )y n H x n≡

[ ]( ) ( )y n k H x n k− ≡ −

22 

Examples: 
The time-invariant systems:  

  

  

 

 

The time-variable systems:  

  

  

 

3( ) ( ) ( )y n x n bx n= +

0
( ) ( ) ( )

N

k
y n h k x n k

=

= −∑

3( ) ( ) ( 1)y n nx n bx n= + −

0
( ) ( ) ( )

N
N n

k
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=
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LINEAR VS. NON-LINEAR SYSTEMS 

23 

  
A discrete-time system is called linear if only if it satisfies the linear 
superposition principle. In the other case, the system is called non-
linear.  

 Definition. A relaxed system           is linear if only if 

  
 

for any arbitrary input sequences            and           , and any 
arbitrary constants      and     . 

The multiplicative (scaling) property of a linear system:  

  

The additivity property of a linear system:  

[.]H

1( )x n 2 ( )x n
1a 2a

24 

Examples: 
The linear systems:  

  

  
 

The non-linear systems:  

  

  

 

0
( ) ( ) ( )

N

k
y n h k x n k

=

= −∑ 2( ) ( ) ( )y n x n bx n k= + −

3( ) ( ) ( 1)y n nx n bx n= + −
0

( ) ( ) ( ) ( 1)
N

k
y n h k x n k x n k

=

= − − +∑
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CAUSAL VS. NON-CAUSAL 

25 

   
Definition. A system is said to be causal if the output of the system 
at any time n (i.e.,  y(n)) depends only on present and past inputs 
(i.e., x(n), x(n-1), x(n-2), … ). In mathematical terms, the output of a 
causal system satisfies an equation of the form 

 

  
where           is some arbitrary function. If a system does not satisfy 
this definition, it is called non-causal. 

[.]F

26 

Examples: 
The causal system:  

  

  

 

The non-causal system:  

  

  

 

0
( ) ( ) ( )

N

k
y n h k x n k

=

= −∑ 2( ) ( ) ( )y n x n bx n k= + −

3( ) ( 1) ( 1)y n nx n bx n= + + −
10

10
( ) ( ) ( )

k
y n h k x n k

=−

= −∑
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STABLE VS. UNSTABLE 

27 

  
An arbitrary relaxed system is said to be bounded input - bounded 
output (BIBO) stable if and only if every bounded input produces 
the bounded output. It means, that there exist some finite numbers 
say         and        , such that  

  

  

for all n. If for some bounded input sequence x(n) , the output y(n)  
is unbounded (infinite), the system is classified as unstable.  

xM yM

28 

Examples:  
The stable systems:  

 

  

  

The unstable system:  

  

  

  

 

0
( ) ( ) ( )

N

k
y n h k x n k

=

= −∑ 2( ) ( ) 3 ( )y n x n x n k= + −

3( ) 3 ( 1)ny n x n= −
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RECURSIVE VS. NON-RECURSIVE 

29 

  

   
A system whose output y(n) at time n depends on any number of the 
past outputs values ( e.g. y(n-1), y(n-2), … ), is called a recursive 
system. Then, the output of a causal recursive system can be 
expressed in general as  

  

 

where F[.] is some arbitrary function. In contrast, if  y(n) at time n 
depends only on the present and past inputs  

 

  

then such a system is called nonrecursive.  

30 

Examples:  
The nonrecursive system:  

  

  

 

The recursive system:  

  

 

0
( ) ( ) ( )

N

k
y n h k x n k

=

= −∑

0 1
( ) ( ) ( ) ( ) ( )

N N

k k
y n b k x n k a k y n k

= =

= − − −∑ ∑
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31 T I M E - D O M A I N  R E P R E S E N T A T I O N  

SYSTEMS (LTI SYSTEMS) 

IMPULSE RESPONSE AND 
CONVOLUTION 

32 

[ ].H

LTI system 

LTI system description by convolution (convolution sum): 

 

 

 

Viewed mathematically, the convolution operation satisfies the 
commutative law. 
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STEP RESPONSE 

34 

[ ].H

These expressions relate the impulse response to the step response 
of the system.  

 

LTI system 
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CLASSIFICATION OF LTI SYSTEMS. 
CAUSAL LTI SYSTEMS 

35 

A relaxed LTI system is causal if and only if its impulse response is 
zero for negative values of n , i.e.  

  

  

Then, the two equivalent forms of the convolution formula can be 
obtained for the causal LTI system:  

STABLE LTI SYSTEMS 

36 

  
 A LTI system is stable if its impulse response is absolutely 
summable, i.e.  
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FINITE IMPULSE RESPONSE (FIR) & 
INFINITE IMPULSE RESPONSE (IIR)   

37 

  

Causal FIR LTI systems:  

 

IIR LTI systems:  

  

 

DIGITAL FILTER 

•  Discrete-time LTI systems are also called digital filter. 
•  Classification 
•  FIR filter & IIR filter 

•  FIR filter 
•  Finite-duration impulse response filter 
•  Causal FIR filter 

•  h(0)=b0,…,h(M)=bM 

•  Nonrecursive or moving average (MA) filter 
•  Difference equation coefficients, {bm} and {a0=1} 
•  Implementation in Matlab: Conv(x,h); filter(b,1,x) 

∑
=

−=
M

m
m mnxbny

0
)()(
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IIR FILTER 

•  Infinite-duration impulse response filter 
• Difference equation 

• Recursive filter, in which the output y(n) is 
recursively computed from its previously 
computed values 
• Autoregressive (AR) filter 

The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have 
been corrupted. Restart your computer, and 
then open the file again. If the red x still 
appears, you may have to delete the image 

ARMA FILTER 

•  Generalized IIR filter 

•  It has two parts: MA part and AR part 
•  Autoregressive moving average filter, ARMA 
•  Solution 
•  filter(b,a,x);        %{bm}, {ak} 

0,)()()(
0 1

≥−−−= ∑ ∑
= =

nknyamnxbny
M

m

N

k
km
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RECURSIVE AND NONRECURSIVE  

41 

  
 

Causal nonrecursive LTI:  

 

Causal recursive LTI:  

  

 

LTI systems:  

characterized by constant-coefficient difference equations  

DIFFERENCE EQUATION 

•  An LTI discrete system can also be described by a 
linear constant coefficient difference equation of 
the form 

•  If aN ~= 0, then the difference equation is of order N 
•  It describes a recursive approach for computing the 

current output,given the input values and previously 
computed output values. 
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FREQUENCY-DOMAIN  

43 

LTI system 
( )h n

44 

LTI system output:  

( )( ) ( ) ( ) ( )

( ) ( )

j n k

k k

j k j n j n j k

k k

y n h k x n k h k e

h k e e e h k e

ω

ω ω ω ω

∞ ∞
−

=−∞ =−∞

∞ ∞
− −

=−∞ =−∞

= − = =

= =

∑ ∑

∑ ∑

( ) ( )j n jy n e H eω ω=

Frequency response:  
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45 

( )( ) ( )j j jH e H e eω ω φ ω=

( ) Re ( ) Im ( )j j jH e H e j H eω ω ω⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

( ) ( )cos ( )sinj

k k
H e h k k j h k kω ω ω

∞ ∞

=−∞ =−∞

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ ∑

46 

Magnitude response:  

Phase response:  

( )( ) d
d
φ ω

τ ω
ω

= −

Group delay function: 
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IMPULSE  RESPONSE VS FREQUENCY 
RESPONSE 

47 

The important property of the frequency response 

  

  

is fact that this function is periodic with period       .  2π

( )jH e ω

( )jH e ω

In fact, we may view the previous expression as the exponential 
Fourier series expansion for                , with h(k) as the Fourier series 
coefficients. Consequently, the unit impulse response h(k) is related 
to                through the integral expression 

SYMMETRY PROPERTIES 

48 

For LTI systems with real-valued impulse response, the magnitude 
response, phase responses, the real component of and the imaginary 
component of                 possess these symmetry properties: 
 

The real component: even function of      periodic with period   

 

 

The imaginary component: odd function of        periodic with period  

( )jH e ω

ω

ω

2π

2π



2/25/13 

25 

49 

The magnitude response: even function of      periodic with period  

 

 

The phase response: odd function of       periodic with period   

ω 2π

ω 2π

Consequence: 

If we known                  and           for                     ,  we can describe 
these functions ( i.e. also                 ) for all values of      . 

( )jH e ω ( )φ ω 0 ω π≤ ≤
( )jH e ω ω

50 

( )jH e ω

ω
π 2ππ−4π− 3π− 2π− 3π 4π

ω
π 2ππ−4π− 3π− 2π− 3π 4π

Symmetry Properties  

( )φ ω

EVEN 

ODD 

0

0
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FOURIER TRANSFORM AND 
FREQUENCY-DOMAIN  

51 

LTI system 
( )h n( )jH e ω

52 

The input signal x(n) and the spectrum of x(n): 

( ) ( )j j k

k
X e x k eω ω

∞
−

=−∞

= ∑
1( ) ( )
2

j j nx n X e e d
π

ω ω

π

ω
π −

= ∫

( ) ( )j j k

k
Y e y k eω ω

∞
−

=−∞

= ∑
1( ) ( )
2

j j ny n Y e e d
π

ω ω

π

ω
π −

= ∫

The output signal y(n) and the spectrum of y(n): 

The impulse response h(n) and the spectrum of h(n):  

Frequency-domain description of LTI system: 
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NORMALIZED FREQUENCY 

53 

It is often desirable to express the frequency response of an LTI 
system in terms of units of frequency that involve sampling 
interval T. In this case, the expressions:  

are modified to the form: 

  

54 

                 is periodic with period                          , where        is 
sampling frequency. 

 Solution: normalized frequency approach: 

( )j TH e ω 2 / 2T Fπ π= F

/ 2F π→

/ 2 50F kHz= 50kHz π→
3

1 3

20 10 2 0.4
50 10 5
x
x

π
ω π π= = =

3

2 3

25 10 0.5
50 10 2
x
x

π
ω π π= = =

100F kHz=

1 20f kHz=

2 25f kHz=

Example:  
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55 

TRANSFORM-DOMAIN 
REPRESENTATION  

Z -TRANSFORM 

56 

Since Z – transform is an infinite power series, it exists only for 
those values of  z for which this series converges. The region of 
convergence of  X(z) is the set of all values of z for which X(z) 
attains a finite value. 

Definition: The Z – transform of a discrete-time signal x(n) is defined 
as the power series: 

where z is a complex variable. The above given relations  are 
sometimes called the direct Z - transform because they 
transform the time-domain signal x(n) into its complex-plane 
representation X(z).  
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The procedure for transforming from z – domain to the 
time-domain is called the inverse Z – transform. It can 
be shown that the inverse Z – transform is given by 

where C denotes the closed contour in the region of 
convergence of  X(z) that encircles the origin. 

TRANSFER FUNCTION  

58 

Application of the Z-transform to this equation under 
zero initial conditions leads to the notion of a transfer 
function.   

The LTI system can be described by means of a constant 
coefficient linear difference equation as follows 
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59 

LTI System 

Transfer function: the ratio of the Z - transform of the 
output signal and the Z - transform of the input signal of 
the LTI system: 

( )H z

[ ]( ) ( )H z Z h n=

( )h n

60 

LTI system: the Z-transform of the constant coefficient          
linear difference equation under zero initial 
conditions:  

0 1
( ) ( ) ( ) ( ) ( )

N M
k k

k k
Y z b k z X z a k z Y z− −

= =

= −∑ ∑
The transfer function of the LTI system: 

0 1
( ) ( ) ( ) ( ) ( )

N M

k k
y n b k x n k a k y n k

= =

= − − −∑ ∑

H(z): may be viewed as a rational function of a complex 
variable z (z-1).  
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POLES AND ZEROS 

61 

Let us assume that  H(z) has been expressed in its 
irreducible or so-called factorized form: 

Pole-zero plot: the plot of the zeros and the poles of H(z) 
in the z-plane represents a strong tool for LTI system 
description. 

Zeros of H(z): the set  {zk} of z-plane for which H(zk)=0 

Poles of H(z): the set  {pk} of  z -plane for which ( )kH p →∞

62 

Example: the 4-th order Butterworth low-pass filter,                  
cut off frequency               . 1 3

πω =

z1= -1.0002, z2= -1.0000 + 0.0002j  

z3= -1.0000 - 0.0002j, z4= -0.9998     

b =[ 0.0186    0.0743    0.1114    0.0743    0.0186 ] 

a =[ 1.0000   -1.5704   1.2756   -0.4844    0.0762 ] 

p1= 0.4488 + 0.5707j, p2= 0.4488 - 0.5707j 

p3= 0.3364 + 0.1772j, p4= 0.3364 - 0.1772j 
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Magnitude Response: Linear Scale  

Phase Response  

( )jH e ω

( )φ ω

ω

ω

64 

Magnitude Response: Logarithmic Scale (dB) 

Group Delay Function  

20log ( )jH e ω

ω

ω

( )τ ω
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65 

Pole-Zero 
Plot  

Unit Circle 

66 

Pole-Zero Plot: 
Zeros   
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1.4.4. Transfer Function and Stability of LTI Systems 

Condition: LTI system is BIBO stable if and only if  the 
unit circle falls within the region of convergence of the 
power series expansion for its transfer function. In the 
case when the transfer function characterizes a causal LTI 
system, the stability condition is equivalent to the 
requirement that the transfer function H(z) has all of its 
poles inside the unit circle. 

68 

Example 1: stable system  

Example 2: unstable system  
2

1 2

1 0.16( )
1 1.1 1.21

zH z
z z

−

− −

−
=

− +

1 1 1

2 2 2

0.4 0.5500 0.9526 1.1 1

0.4 0.5500 0.9526 1.1 1

z p j p

z p j p

= = + = >

= − = − = >

1 2

1 2

1 0.9 0.18( )
1 0.8 0.64

z zH z
z z

− −

− −

− +
=

− +

1 1 1

2 2 2

0.3 0.4000 0.6928 0.8 1

0.6 0.4000 0.6928 0.8 1

z p j p

z p j p

= = + = <

= = − = <
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Z – Domain: 

0

1

( )
( )

1 ( )

N
k

k
M

k

k

b k z
H z

a k z

−

=

−

=

=
+

∑

∑

transfer function   
Frequency – Domain: 

0

1

( )
( )

1 ( )

N
j k

j k
M

j k

k

b k e
H e

a k e

ω

ω

ω

−

=

−

=

=
+

∑

∑

frequency response   

Time – Domain: 

0 1
( ) ( ) ( ) ( ) ( )

N M

k k
y n b k x n k a k y n k

= =

= − − −∑ ∑

constant coefficient linear difference equation  

1.4.5. LTI System Description. Summary 

j jz e e zω ω= =

h(n) 

Z 

Z-1 FT-1 

FT 

70 

( )H zZ – Domain: transfer function   

( ) ( ) jw
j

z e
H zH e ω

=
= 11 )( ) (

2
n

C

H zh n z dz
jπ

−= ∫—

( )h kTime – Domain: impulse response 

( ) ( )j j k

k
H e eh kω ω

∞
−

=−∞

= ∑ )( () k

k
H z zh k

∞
−

=−∞

= ∑

Frequency – Domain: frequency response   

( )( ) j

j

e z
eH z H

ω

ω

=
= (

2
)) (1 j kjH deh k eω

π
ω

π

ω
π −

= ∫

( )jH e ω


