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BASIC DEFINITIONS

Signals may be classified into four categories depending
on the characteristics of the time-variable and values
they can take:

* continuous-time signals (analogue signals),
» discrete-time signals,

* continuous-valued signals,
» discrete-valued signals.
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CONTINUOUS-TIME (ANALOGUE)

SIGNALS

Time: defined for every value of time t ER,
Descriptions: functions of a continuous variable ¢: f (),
Notes: they take on values in the continuous

interval f(¢)E(-a,b) for a,b — .
Note: fOEC

f)=0o+jw

o€ (-a,b)and wE(-a,b)

a,b— o

DISCRETE-TIME SIGNALS

Time: defined only at discrete values of time: ¢ = n1,
Descriptions: sequences of real or complex
numbers f(nT) = f(n),
Note A.: they take on values in the continuous
interval f(n)E(-a,b) for a,b — x,
Note B.: sampling of analogue signals:
 sampling interval, period: 7,
* sampling rate: number of samples per

second,
« sampling frequency (Hz): fq =1/T .
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CONTINUOUS-VALUED SIGNALS

Time: they are defined for every value of time or
only at discrete values of time,

Value: they can take on all possible values on
finite or infinite range,

Descriptions: functions of a continuous variable
or sequences of numbers.

Discrete-valued signals:

Time: they are defined for every value of time or
only at discrete values of time,

Value: they can take on values from a finite set of
possible values,

Descriptions: functions of a continuous variable or
sequences of numbers.
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DIGITAL FILTER THEORY:

Discrete-time signals:

Definition and descriptions: defined only at discrete
values of time and they can take all possible
values on finite or infinite range (sequences of
real or complex numbers: f(n)),

Note: sampling process, constant sampling period.

Digital signals:

Definition and descriptions: discrete-time and
discrete-valued signals (i.e. discrete -time
signals taking on values from a finite set of
possible values),

Note: sampling, quatizing and coding process i.e.
process of analogue-to-digital conversion. -

DISCRETE-TIME SIGNAL

REPRESENTATIONS
A. Functional representation:
1 for n=13 0 for n<0
x(n)=16 for n=0,7 ym)=10,6" for n=0,1,LK ,102
0 elsewhere 1 n>102
B. Graphical 002: x(n)
representation 02 o
0.15 7
01 % %
0.05




DISCRETE-TIME SIGNAL

* In Matlab, a finite-duration sequence
representation requires two vectors, and each
forx and n.

* Example:

* Question: whether or not an arbitrary infinite-duration
sequence can be represented in MATLAB?

DISCRETE-TIME SIGNAL
REPRESENTATIONS

C. Tabular representation:

D. Sequence representation:
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ELEMENTARY DISCRETE-TIME
SIGNALS

A. Unit sample sequence (unit sample, unit impulse,
unit impulse signal)

08 ﬂ(

06

N’

0.4

0.2

FUNCTION [X,N]=IMPSEQ(N,,N,,N,)

- A:n=[n1:n2];

e X= (1.n2-n1+1); X(NO-n1+1)=1;
- B:n=[n1:n2]; x = [(n-n0)==0]; (n,x,’ro’);

1
0.8}

’}0'6" -3<n<3

%0.4- n0=0
0.2
% 3 T 0 q 3 3
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ELEMENTARY DISCRETE-TIME SIGNALS

B. Unit step signal (unit step, Heaviside step sequence)

UNIT STEP SEQUENCE

m=l" =Y { 0.0.LLL -
un) = =1°,YU,U, Ll,1,°"
0, n<0 1 J

A: n=[nl:n2]; x=zeros(1,n2-n2+1); x(n0-n1+1:end)=1;
B: n=[n1:n2]; x=[(n-n0)>=0];
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3. REAL-VALUED EXPONENTIAL
SEQUENCE

For Example:  x(n) =(0.9)",0=n=<10
n=[0:10]; x=(0.9) " n; stem(n,x,” 0" )

0.8}

0.6

1000000

ELEMENTARY DISCRETE-TIME SIGNALS

C. Complex-valued exponential signal
(complex sinusoidal sequence, complex phasor)

x(n) =™, |x(n)| =1, arg[x(n)]= wnT =27z f.nT =

where
wER, nEN, j=~-1 is imaginary unit

and
T'is sampling period and S5 is sampling frequency.
For Example: n=[0:10]; x=cp((2+3j)*n);

2 f.n

S
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DISCRETE-TIME SYSTEMS

A discrete-time system is a device or algorithm that
operates on a discrete-time signal called the input or
excitation (e.g. x(n)), according to some rule (c.g. H[.])
to produce another discrete-time signal called the output

or response (e.g. y(n)).

This expression denotes also the transformation HJ./
(also called operator or mapping) or processing
performed by the system on x(n) to produce y(n).

DISCRETE-TIME SYSTEMS
Input-Output Model of Discrete-Time System

(input-output relationship description)

discrete-time
system

H] ]
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CLASSIFICATION.
STATIC VS. DYNAMIC SYSTEMS

A discrete-time system is called static or memoryless if its output
at any time instant n depends on the input sample at the same time,
but not on the past or future samples of the input. In the other case,
the system is said to be dynamic or to have memory.

If the output of a system at time n is completly determined by the
input samples in the interval from n-Nto n (N = (), the system is
said to have memory of duration N.

If N =0, the system is static or memoryless.
If 0 < N < oo, the system is said to have finite memory.

If N — oo, the system is said to have infinite memory.

Examples:

The static (memoryless) systems:

y(n) = nx(n) + bx’ (n)

The dynamic systems with finite memory:

y(n) = ; h(k)x(n - k)

The dynamic system with infinite memory:

) = Zh(k)xm k)

20
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. TIME-INVARIANT VS. TIME-VARIABLE

A discrete-time system is called time-invariant if its input-output
characteristics do not change with time. In the other case, the
system is called time-variable.

Definition. A relaxed system H[.] is time- or shift-invariant if
only if "
y(n)=H|x(n)] x(m)—*—> y(n)

implies that

y(n-k)=H[x(n-k)] x(n-k)—L—=y(n-k)

for every input signal ) and every time shift k .

21

Examples:

The time-invariant systems:

y(n) = x(n) +bx’ (n)
y(n) = ; h(k)x(n - k)
The time-variable systems:
y(n) = nx(n) + bx’(n -1)

y(n) = ; h*" (k)x(n - k)

22
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LINEAR VS. NON-LINEAR SYSTEMS

A discrete-time system is called linear if only if it satisfies the linear
superposition principle. In the other case, the system is called non-
linear.

Definition. A relaxed system H[.] is linear if only if

for any arbitrary input sequences X, (72) and X, (%), and any
arbitrary constants @, and d,.

The multiplicative (scaling) property of a linear system:

The additivity property of a linear system:

23

Examples:

The linear systems:

y(n) = 2h(k)x(n — k) y(n) = x(n*) + bx(n - k)

The non-linear systems:

y(n) = nx(n) +bx’(n=1) y(n) = ﬁh(k)x(n -k)x(n-k+1)

24

2/25/13

12



CAUSAL VS. NON-CAUSAL

Definition. A system is said to be causal if the output of the system
at any time n (i.e., y(n)) depends only on present and past inputs
(i.e., x(n), x(n-1), x(n-2), ... ). In mathematical terms, the output of a
causal system satisfies an equation of the form

where F[.] is some arbitrary function. If a system does not satisfy
this definition, it is called non-causal.

Examples:

The causal system:
y(n) = 2h(k)x(n —k)  y(n)=x*(n)+bx(n-k)

The non-causal system:

y(n)=nx(n+1)+bx’(n-1) y(n)= i h(k)x(n-k)

=-10

26

2/25/13

13



STABLE VS. UNSTABLE

An arbitrary relaxed system is said to be bounded input - bounded
output (BIBO) stable if and only if every bounded input produces
the bounded output. It means, that there exist some finite numbers
say M and M, such that

for all n. If for some bounded input sequence x(n) , the output y(n)
is unbounded (infinite), the system is classified as unstable.

27

Examples:

The stable systems:
y(n) = 2h(k)x(n —k)  y(n)=x(n")+3x(n-k)

The unstable system:

y(n)=3"x(n-1)

28
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RECURSIVE VS. NON-RECURSIVE

A system whose output y(n) at time n depends on any number of the
past outputs values ( e.g. y(n-1), y(n-2), ... ), is called a recursive
system. Then, the output of a causal recursive system can be
expressed in general as

where F/.] is some arbitrary function. In contrast, if y(n) at time n
depends only on the present and past inputs

then such a system is called nonrecursive. -

Examples:

The nonrecursive system:
N

y(n) = ; h(k)x(n - k)

The recursive system:

y(n) = zb(k)X(n -k) - Za(k)y(n - k)

1

30
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SYSTEMS (LTI SYSTEMS)

31

IMPULSE RESPONSE AND
CONVOLUTION

LTI system

Hl |

LTI system description by convolution (convolution sum):

Viewed mathematically, the convolution operation satisfies the

commutative law.

32
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2 T T T T T T T
Input Sequence x(n)
E1| 4
=
Iz 2TusTiissTissassssss] R R R R
. -20 -10 0 10 20 30 40 50
Impulse Response hin)

STEP RESPONSE

of the system.

LTI system

Hl |

These expressions relate the impulse response to the step response

34

17
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CLASSIFICATION OF LTI SYSTEMS.
CAUSAL LTI SYSTEMS

A relaxed LTI system is causal if and only if its impulse response is
zero for negative values of n , i.e.

Then, the two equivalent forms of the convolution formula can be
obtained for the causal LTI system:

35

STABLE LTI SYSTEMS

A LTI system is stable if its impulse response is absolutely
summable, i.e.

36
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FINITE IMPULSE RESPONSE (FIR) &
INFINITE IMPULSE RESPONSE (IIR)

Causal FIR LTI systems:

IIR LTI systems:

37

DIGITAL FILTER

+ Discrete-time LTl systems are also called digital filter.
* Classification

* FIR filter & IR filter
* FIR filter

« Finite-duration impulse response filter

« Causal FIR filter

M
* h(0)=by.....n(M)=b,, ¥®) = b,x(n-m)
* Nonrecursive or moving ovemr=c(§ge (MA) filter
- Difference equation coefficients, {b,,} and {a,=1}
* Implementation in Matlab:

2/25/13
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[IR FILTER

* Infinite-duration impulse response filter
- Difference equation

pears, yot

* Recursive filter, in which The‘ oufput y(n)is
recursively computed from its previously
computed values

« Autoregressive (AR) filter

ARMA FILTER

« Generalized IIR filter

y(n)= ibmx(n—m)—iaky(n—k), n=0

* It has two parts: MA part and AR part
+ Autoregressive moving average filter, ARMA

+ Solution
(b,ax);  %{b.} {ag

2/25/13
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RECURSIVE AND NONRECURSIVE

Causal nonrecursive LTI:

Causal recursive LTI:

LTI systems:

characterized by constant-coefficient difference equations

41

DIFFERENCE EQUATION

« An LTI discrete system can also be described by a
of

the form

* If ay~= 0, then the difference equation is of order N

* It describes a for computing the
current output,given the input values and previously
computed output values.

2/25/13
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FREQUENCY-DOMAIN

LTI system
h(n)

43

LTI system output:

y(n) = i h(k)x(n-k) = i h(k)e™ " =

f=—00 S
= h(k)e—jWkejw” — ejwn h(k)e—jwk
kZoo ka

y(n) =e""H(e™)

Frequency response:

44
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H(e™) = ‘H(ejw)‘ /(@
H(e™)=Re |'H(ej‘”)'| + jIm|'H(ej‘”)'|

H(e'”) = i h(k)cos wk +j’— i h(k)sinwk}

k=—00 k=—00

Magnitude response:

Phase response:

Group delay function:
dp(w
)
dw

46
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IMPULSE RESPONSE VS FREQUENCY
RESPONSE

The important property of the frequency response

is fact that this function is periodic with period 2 TT.

In fact, we may view the previous expression as the exponential
Fourier series expansion for H (e’”) , with h(k) as the Fourier series
coefficients. Consequently, the unit impulse response 4(k) is related
to H (e’”") through the integral expression

47

SYMMETRY PROPERTIES

For LTI systems with real-valued impulse response, the magnitude

response, phase responses, the real component of and the imaginary
Jjo .

component of F7(€’”) possess these symmetry properties:

The real component: even function of @ periodic with period 277

The imaginary component: odd function of @ periodic with period
27

48
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The magnitude response: even function of @ periodic with period 2.1

The phase response: odd function of @ periodic with period 277

Consequence:

If we known |H (e’”)| and P@)for 0= w = 7, we can describe
these functions ( i.e. also H (e’”) ) for all values of @ .

49

Symmetry Properties

e

EVEN

@

3t 4m

g

v

“
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FOURIER TRANSFORM AND
FREQUENCY-DOMAIN

LTI system
H(e’”) h(n)

~
N

51

The input signal x(n) and the spectrum of x(n):
: i ) 1~ : 4
oy = ok x(n)=— [ X(e/")e'"dw
X (') kzwx(k)e (== f,, (e’)
The output signal y(n) and the spectrum of y(n):
o 1 y j j on
Y(e”) =3 yke ™ )= [Y(e")e'" dw

k=—00

The impulse response /(n) and the spectrum of /(n):

Frequency-domain description of LTI system:

52
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NORMALIZED FREQUENCY

It is often desirable to express the frequency response of an LTI
system in terms of units of frequency that involve sampling
interval 7. In this case, the expressions:

are modified to the form:

53

H(e’") is periodic with period 27/ T = 27F, where F is
sampling frequency.

Solution: normalized frequency approach: /2 — 71

Example:

F=100kHz F/2=50kHz 50kHz— &

3
£ =20kHz o= 20x10 _ 2 _ 04

= .4
50x10° 5
25x10° T
=25kHz w, = ad=—=05x
% > 50x10° 2

54
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TRANSFORM-DOMAIN
REPRESENTATION

55

Z -TRANSFORM

Definition: The Z — transform of a discrete-time signal x(n) is defined
as the power series:

where z is a complex variable. The above given relations are
sometimes called the direct Z - transform because they
transform the time-domain signal x(») into its complex-plane
representation X(z).

Since Z — transform is an infinite power series, it exists only for
those values of z for which this series converges. The region of
convergence of X(z) is the set of all values of z for which X(z)
attains a finite value.

56
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The procedure for transforming from z — domain to the
time-domain is called the inverse Z — transform. It can
be shown that the inverse Z — transform is given by

where C denotes the closed contour in the region of
convergence of X(z) that encircles the origin.

57

TRANSFER FUNCTION

The LTI system can be described by means of a constant
coefficient linear difference equation as follows

Application of the Z-transform to this equation under
zero initial conditions leads to the notion of a transfer
function.

58

2/25/13

29



LTI System

h(n) — H(z)

H(z) = Z[h(n)]

Transfer function: the ratio of the Z - transform of the
output signal and the Z - transform of the input signal of
the LTI system:

LTI system: the Z-transform of the constant coefficient
linear difference equation under zero initial
conditions:

y(n) = ;b(k)x(n —k) - Zd(k)y(n - k)

Y(z) = 213(/()2-")((2) - 2a(k)z‘kY(z)

The transfer function of the LTI system:

H(z): may be viewed as a rational function of a complex
variable z (z). 0

2/25/13
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POLES AND ZEROS

Let us assume that H(z) has been expressed in its
irreducible or so-called factorized form:

Zeros of H(z): the set {z,} of z-plane for which H(z,)=0

Poles of (z): the set {p,} of z-plane for which H(p,) — «

Pole-zero plot: the plot of the zeros and the poles of H(z)
in the z-plane represents a strong tool for LTI system

description.
61

Example: the 4-th order Butterworth low-pass filter,
cut off frequency w, = % :

b=[0.0186 0.0743 0.1114 0.0743 0.0186]
a=[1.0000 -1.5704 1.2756 -0.4844 0.0762]

z,= -1.0002, z,= -1.0000 + 0.0002j
z,= -1.0000 - 0.0002), z,= -0.9998

p,=0.4488 + 0.5707j, p,= 0.4488 - 0.5707
p;=0.3364 +0.1772j, p,= 0.3364 - 0.1772j

62
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Magnitude Response: Linear Scale

. Magnitude Response: Logarlthmlc Scale (dB)

-100

-200

-300
0

201og\H(eﬂ“)\
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Pole-Zero Plot
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1.4.4. Transfer Function and Stability of LTI Systems

Condition: LTI system is BIBO stable if and only if the
unit circle falls within the region of convergence of the
power series expansion for its transfer function. In the
case when the transfer function characterizes a causal LTI
system, the stability condition is equivalent to the
requirement that the transfer function /(z) has all of its
poles inside the unit circle.

67

Example 1: stable system

1-0.9z7"'+0.1827
1-0.8z7" +0.64z*

H(z)=

z,=0.3 p, =0.4000 +0.6928,f |p,|= 0.8 <1
z,=0.6 p, =0.4000 - 0.6928

Example 2: unstable system

1-0.16z7*
1-1.1z7" +1.21z72

z,=04 p,=0.5500+0.9526
z,=-0.4 p, =0.5500-0.9526

H(z)=

68
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1.4.5. LTI System Description. Summary

Time — Domain:

constant coefficient linear difference equation

y(n) = Qb(k)X(n k) - Za(k)y(n—k)

Z — Domain: Frequency — Domain:
transfer function %frequency response
zb(k)z o FT-! zb(k)e'f‘”"
H) =~ H(e")=—2 ——
a(k)z 1+ Z a(k)e ™
1 Jj@ Jj@ 1

e =z B
/ 69

Time — Domain: impulse response /(k)

H(e™) = 5: h(k)e ™ H(z)= 5: h(k)z™

fk=—00 fk=—00

Z — Domain: transfer function H(z)

1 n-1
l’l(l’l) = E}H(Z)Z dz

C

H(ejw) = H(z)

z=e"

Frequency — Domain: frequency response H (e-’ ‘”)

H(z)=H(e"), h(k)=$}H(e-"’”)ej“”‘da)

70

2/25/13

35



